Самолет интегральной схемы

Самолет интегральной аэродинамической компоновки (патент RU 2440916 C1)


Изобретение относится к многорежимным самолетам. Самолет интегральной аэродинамической компоновки содержит фюзеляж (1) с наплывом (2), крыло, консоли (3) которого плавно сопряжены с фюзеляжем (1), цельноповоротное горизонтальное оперение (4), цельноповоротное вертикальное оперение (5). Средняя часть фюзеляжа выполнена уплощенной и образована в продольном отношении набором аэродинамических профилей. Двигатели расположены в мотогондолах (6), разнесенных друг от друга по горизонтали, а оси двигателей ориентированы под острым углом к плоскости симметрии самолета по направлению полета. Наплыв (2) включает управляемые поворотные части (8). Изобретение направлено на уменьшение радиолокационной заметности, увеличение маневренности на больших углах атаки и аэродинамического качества на сверхзвуковых. 9 з.п. ф-лы, 4 ил.
Изобретение относится к многорежимным самолетам, эксплуатируемым на сверх- и дозвуковых скоростях полета, в широком диапазоне высот полета. Преимущественная область применения изобретения — многорежимные сверхманевренные самолеты с крейсерским полетом на сверхзвуковой скорости и малым уровнем заметности в радиолокационном диапазоне.
Создание самолета, способного выполнять задачи в широком диапазоне высот и скоростей полета, обладающего возможностями сверхманевренности и, при этом, имеющим малую заметность в радиолокационном диапазоне длин волн, является сложной технической задачей.
К аэродинамической компоновке такого самолета предъявляются требования максимизации аэродинамического качества (увеличению подъемной силы и уменьшению силы лобового сопротивления) на до- и сверхзвуковых скоростях полета, обеспечению управляемости на сверхмалых скоростях полета. К внешней форме планера предъявляются требования по снижению радиолокационной заметности. Все перечисленные требования являются противоречивыми, а создание самолета, отвечающего подобным требованиям, представляет собой определенный компромисс.
Известен самолет, принятый в качестве ближайшего аналога, который сочетает признаки многорежимного сверхзвукового самолета, обладающего сверхманевренностью и малой радиолокационной заметностью. Известный самолет выполнен по нормальной балансировочной схеме с цельноповоротным горизонтальным оперением, обеспечивающим управление самолетом в продольном канале (по тангажу) на всех режимах полета. Помимо управления самолетом, в продольном канале цельноповоротное горизонтальное оперение применяется для управления самолетом по крену путем дифференциального отклонения на режимах сверхзвукового полета.
Трапециевидное крыло имеет отрицательную стреловидность задней кромки, что позволяет реализовать высокие значения длин хорд в корневой части для уменьшения относительной толщины крыла в этой зоне при высоких значениях абсолютной толщины крыла. Это решение направлено одновременно на уменьшение волнового сопротивления на транс- и сверхзвуковых скоростях полета, а также на увеличение запаса топлива в крыльевых баках.

Механизация передней кромки крыла представлена адаптивным поворотным носком, применяемым для увеличения значения аэродинамического качества в дозвуковом крейсерском полете, для улучшения обтекания крыла на больших углах атаки, а также для улучшения маневренных характеристик.
Механизация задней кромки крыла представлена:
флапперонами, применяемыми для управления подъемной силой на режимах взлета и посадки, а также для управления самолетом по крену на режимах транс- и сверхзвукового полета;
элеронами, применяемыми для управления самолетом по крену на режимах взлета и посадки.
Две консоли вертикального оперения, состоящие из килей и рулей направления, обеспечивают устойчивость и управляемость в путевом канале, и воздушное торможение. Управление в путевом канале обеспечивается синфазным отклонением рулей направления, а воздушное торможение — дифференциальным отклонением рулей направления. Плоскости хорд консолей вертикального оперения отклонены от вертикали на острый угол, что позволяет снизить радиолокационную заметность самолета в боковой полусфере.
Воздухозаборники двигателей расположены по бокам фюзеляжа. Плоскости входа воздухозаборников скошены в двух плоскостях, что позволяет обеспечить устойчивый поток воздуха, поступающий к двигателям на всех режимах полета, в том числе на больших углах атаки.
Двигатели самолета расположены в хвостовой части, вплотную друг к другу, что при расположении воздухозаборников по бокам фюзеляжа позволяет реализовать изогнутую форму каналов воздухозаборников. Данное решение применяется для снижения радиолокационной заметности двигателя, и, как следствие, самолета в целом в передней полусфере, благодаря экранированию компрессоров двигателей конструкцией каналов воздухозаборников. Отклоняемые в вертикальных плоскостях створки «плоских» сопел реактивных двигателей позволяют обеспечить управление вектором тяги, что, в свою очередь, позволяет реализовать возможность управления самолетом в канале тангажа на режимах малых скоростей полета, а также обеспечивает запас пикирующего момента на закритических углах атаки совместно с цельноповоротным горизонтальным оперением. Подобное решение обеспечивает функцию сверхманевренности (Lockheed Martin F/A-22 Raptor: Stealth Fighter. Jay Miller. 2005).
В качестве недостатков известного самолета можно указать следующее:
— невозможность управления в каналах крена и рысканья при полете на малых скоростях, поскольку двигатели расположены вплотную друг к другу, что не позволяет создать достаточный для управления момент;
— расположение двигателей вплотную друг к другу делает невозможным расположение в фюзеляже грузовых отсеков;
— изогнутая форма каналов воздухозаборников требует увеличения их длины, и, следовательно, массы самолета;
— невозможность обеспечения «схода» самолета с закритических углов атаки при отказе системы управления реактивными соплами двигателей;
— применение неподвижных килей с рулями направления требует увеличения потребной площади вертикального оперения для обеспечения путевой устойчивости на сверхзвуковых режимах полета, что приводит к росту массы оперения, и, следовательно, самолета в целом, а также к увеличению лобового сопротивления.
Технический результат, на достижение которого направлено изобретение, заключается в создании самолета, обладающего малой радиолокационной заметностью, сверхманевренностью на больших углах атаки, высоким аэродинамическим качеством на сверхзвуковых скоростях и, одновременно, сохраняющего высокое аэродинамическое качество на дозвуковых режимах, возможностью размещения во внутренних отсеках крупногабаритного груза.
Указанный технический результат достигается тем, что в самолете интегральной аэродинамической компоновки, содержащий фюзеляж, крыло, консоли которого плавно сопряжены с фюзеляжем, горизонтальное и вертикальное оперения, двухдвигательную силовую установку, фюзеляж снабжен наплывом, расположенным над входом в воздухозаборники двигателей и включающим управляемые поворотные части, средняя часть фюзеляжа выполнена уплощенной и образована в продольном отношении набором аэродинамических профилей, мотогондолы двигателей разнесены друг от друга по горизонтали, а оси двигателей ориентированы под острым углом к плоскости симметрии самолета по направлению полета.
Кроме того, вертикальное оперение выполнено цельноповоротным с возможностью синфазного и дифференциального отклонения.
Кроме того, цельноповоротное вертикальное оперение установлено на пилонах, расположенных на боковых хвостовых балках фюзеляжа, при этом на фронтальной части пилонов расположены воздухозаборники продува мотоотсеков и теплообменников системы кондиционирования.
Кроме того, горизонтальное оперение выполнено цельноповоротным с возможностью синфазного и дифференциального отклонения.
Кроме того, реактивные сопла двигателей выполнены с возможностью синфазного и дифференциального отклонения.
Кроме того, входы воздухозаборников двигателей расположены по бокам носовой части фюзеляжа за кабиной экипажа, при этом нижняя кромка входов воздухозаборников двигателей расположена ниже обводов фюзеляжа.
Кроме того, входы воздухозаборников двигателей выполнены скошенными в двух плоскостях — относительно вертикальных продольной и поперечной плоскостей самолета.
Кроме того, плоскости хорд консолей цельноповоротного вертикального оперения отклонены от вертикальной плоскости на острый угол.
Кроме того, передние кромки поворотной части наплыва, консолей крыла и горизонтального оперения выполнены параллельными друг другу.
Кроме того, задние кромки крыла и горизонтального оперения выполнены параллельными друг другу.
Изобретение поясняется чертежами, где на фиг.1 изображен самолет интегральной аэродинамической компоновки — вид сверху;

на фиг.2 — самолет интегральной аэродинамической компоновки — вид сбоку;

на фиг.3 — самолет интегральной аэродинамической компоновки — вид спереди;

на фиг.4 — Вид A фиг.2.

На представленных чертежах позициями обозначены:
1 — фюзеляж,
2 — наплыв фюзеляжа,
3 — консоли крыла,
4 — консоли цельноповоротного вертикального оперения (ЦПГО),
5 — консоли цельноповоротного горизонтального оперения (ЦПВО),
6 — мотогондолы двигателей,
7 — воздухозаборники двигателей,
8 — управляемые поворотные части наплыва фюзеляжа,

9 — поворотные носки крыла,
10 — элероны,
11 — флаппероны,
12-пилон ЦПВО,
13 — воздухозаборники продува мотоотсеков и теплообменников системы кондиционирования,
14 — поворотные реактивные сопла двигателей,
15 — срезы реактивных поворотных сопел двигателей,
16 — оси вращения поворотных сопел двигателей,
17 — плоскости вращения поворотных сопел двигателей.
Самолет интегральной аэродинамической компоновки представляет собой моноплан, выполненный по нормальной балансировочной схеме, и содержит фюзеляж 1 с наплывом 2, крыло, консоли 3 которого плавно сопряжены с фюзеляжем 1, цельноповоротное горизонтальное оперение (далее — ЦПГО) 4, цельноповоротное вертикальное оперение (далее — ЦПВО) 5, двухдвигательную силовую установку, двигатели которой расположены в мотогондолах 6. Мотогондолы 6 двигателей разнесены друг от друга по горизонтали, а оси двигателей ориентированы под острым углом к плоскости симметрии самолета в направлении полета.
Наплыв 2 фюзеляжа 1 расположен над воздухозаборниками 7 двигателей и включает управляемые поворотные части 8. Поворотные части 8 наплыва 2 являются передними кромками средней уплощенной части фюзеляжа 1.
Консоли 3 крыла, плавно сопряженные с фюзеляжем 1, снабжены механизацией передней и задней кромок, включающей поворотные носки 9, элероны 10 и флаппероны 11.
ЦПГО 4 установлено на боковых хвостовых балках фюзеляжа 1. ЦПВО 5 установлено на пилонах 12, закрепленных на боковых хвостовых балках фюзеляжа 1. На фронтальной части пилонов 12 расположены воздухозаборники 13 продува мотоотсеков и теплообменников системы кондиционирования. Установка ЦПВО 5 на пилонах 12 позволяет увеличить плечо опор оси ЦПВО 5, что, в свою очередь, обеспечивает снижение реактивных нагрузок на силовые элементы каркаса планера самолета и, соответственно, снизить вес. Увеличение плеча опор ЦПВО 5 обусловлено тем, что верхняя опора размещена внутри пилона 12, что, собственно, и позволило увеличить плечо опор (расстояние между опорами). Кроме того, пилоны 12 являются обтекателями гидроприводов ЦПВО 5 и ЦПГО 4, что позволяет за счет выноса гидроприводов за пределы фюзеляжа 1 увеличить объем грузовых отсеков между мотогондолами 6.
Входы воздухозаборников 7 двигателей расположены по бокам носовой части фюзеляжа 1, за кабиной экипажа, под поворотными частями 8 наплыва 2 и выполнены скошенными в двух плоскостях — относительно вертикальных продольной и поперечной плоскостей самолета, при этом нижняя кромка входов воздухозаборников 7 двигателей расположена ниже обводов фюзеляжа 1.
Двигатели оборудованы поворотными осесимметричными реактивными соплами 14, поворот которых осуществляется в плоскостях, ориентированных под углом к плоскости симметрии самолета. Реактивные сопла 14 двигателей выполнены с возможностью синфазного и дифференциального отклонения для осуществления управления самолетом путем отклонения вектора тяги. Схема ориентации реактивных поворотных сопел 14 отображена на фиг.4, на которой отображены: срезы 15 реактивных поворотных сопел 14 двигателей, оси вращения 16 реактивных поворотных сопел 14 двигателей и плоскости 17 вращения поворотных реактивных сопел 14 двигателей.
Самолет обладает малой заметностью в радиолокационном диапазоне длин волн, а благодаря обеспечению сверхманевренности — выполняет задачи в широком диапазоне высот и скоростей полета.
Увеличение аэродинамического качества на дозвуковых скоростях полета достигается за счет формирования поверхности средней части фюзеляжа 1 (за исключением носовой и хвостовой частей) в продольном отношении (в продольных сечениях) набором аэродинамических профилей и применением поворотных частей 8 наплыва 2, что позволяет включить поверхность фюзеляжа 1 в создание подъемной силы.
Высокий уровень аэродинамического качества на дозвуковых скоростях полета достигается за счет применения крыла с консолями 3 трапециевидной формы в плане с большой стреловидностью по передней кромке, большого сужения, с большим значением длины корневой хорды и малым значением длины концевой хорды. Такой набор решений позволяет при больших значениях абсолютных высот крыла, особенно в корневой части, реализовать малые значения относительных толщин крыла, что снижает значения прироста силы лобового сопротивления возникающего на транс- и сверхзвуковых скоростях полета.
ЦПГО 4 обеспечивает возможность управления самолетом в продольном канале при синфазном отклонении и в поперечном канале при дифференциальном отклонении на транс- и сверхзвуковых скоростях полета.
ЦПВО 5 обеспечивает устойчивость и управляемость в путевом канале на всех скоростях полета и обеспечивает функцию воздушного торможения. Устойчивость на сверхзвуковых скоростях полета при недостаточной потребной статической площади обеспечивается благодаря отклонению консолей ЦПВО 5 целиком. При возникновении возмущения атмосферы или порыва ветра в путевом канале осуществляют синфазное отклонение консолей ЦПВО 5 в сторону парирования возмущения. Такое решение позволяет уменьшить площадь оперения, уменьшив, тем самым, массу и сопротивление оперения и самолета в целом. Управление в путевом канале осуществляется при синфазном отклонении ЦПВО 5, а воздушное торможение — при дифференциальном отклонении ЦПВО 5.
Механизация крыла применяется для обеспечения управления подъемной силой и креном. Поворотный носок 9 крыла применяется для увеличения критического угла атаки и обеспечения безударного обтекания крыла, для полета «по огибающей поляры» на режимах взлета, посадки, маневрирования и крейсерского дозвукового полета. Элероны 10 предназначены для управления самолетом по крену при дифференциальном отклонении на режимах взлета и посадки. Флаппероны 11 предназначены для управления приращением подъемной силы при синфазном отклонении вниз на режимах взлета и посадки, для управления креном при дифференциальном отклонении.
Поворотная часть 8 наплыва 2 фюзеляжа 1 при отклонении вниз уменьшает площадь плановой проекции фюзеляжа 1 перед центром масс самолета, что способствует созданию избыточного момента на пикирование при полете на углах атаки, близких к 90 градусам. Таким образом, в случае отказа системы управления реактивных сопел 14 обеспечивается возможность перехода с режима полета на закритических углах атаки к полету на малых углах атаки без использования управления самолетом посредством отклонения вектора тяги двигателей. Одновременно поворотная часть 8 наплыва 2 является механизацией передней кромки наплыва 2 фюзеляжа 1. При отклонении поворотной части 8 наплыва 2 вниз на режиме крейсерского полета она выполняет функцию, аналогичную функции поворотного носка 9 крыла.
Применение боковых воздухозаборников, расположенных под поворотной частью 8 наплыва 2, позволяет обеспечить устойчивую работу двигателей на всех режимах полета самолета, во всех пространственных положениях за счет выравнивания набегающего потока на больших углах атаки и скольжения.
Расположение двигателей в изолированных мотогондолах 6 позволяет расположить между ними отсек для крупногабаритного груза. Для парирования разворачивающего момента при отказе одного из двигателей их оси ориентированы под острым углом к плоскости симметрии самолета так, чтобы вектор тяги работающего двигателя проходил ближе к центру масс самолета. Такое расположение двигателей, совместно с применением поворотных реактивных сопел 14, поворот которых осуществляется в плоскостях, наклоненных под острым углом к плоскости симметрии самолета, позволяет осуществлять управление самолетом при помощи вектора тяги двигателей — в продольном, поперечном и путевом каналах. Управление в продольном канале осуществляется при синфазном отклонении поворотных реактивных сопел 14, создающих момент тангажа относительно центра масс самолета. Управление самолетом в боковом канале осуществляется посредством дифференциального отклонения реактивных сопел 14, создающих одновременно момент крена и момент рыскания, при этом момент крена парируется отклонением аэродинамических органов управления (элеронами 10 и флапперонами 11). Управление самолетом в поперечном канале осуществляется при дифференциальном отклонении поворотных реактивных сопел 14, создающих момент крена относительно центра масс самолета.
Снижение радиолокационной заметности самолета достигается за счет комплекса конструктивно-технологических мероприятий, к которым, в частности, относится формообразование обводов планера, включающее в себя:
— параллельность передних кромок поворотной части 8 наплыва 2, консолей 3 крыла и горизонтального оперения 4; параллельность задних кромок консолей 3 крыла и горизонтального оперения 4, что позволяет локализовать пики отраженных от несущих поверхностей планера самолета электромагнитных волн и, тем самым, уменьшить общий уровень радиолокационной заметности самолета в азимутальной плоскости;
— ориентацией касательных к контуру поперечных сечений фюзеляжа, в том числе фонаря кабины, под углом к вертикальной плоскости (плоскости симметрии самолета), что способствует отражению электромагнитных волн, попадающих на элементы планера с боковых ракурсов, в верхнюю и нижнюю полусферы, тем самым, уменьшая общий уровень радиолокационной заметности самолета в боковой полусфере;
— скошенность входа воздухозаборников двигателей в двух плоскостях — относительно вертикальных продольной и поперечной плоскостей самолета, позволяет отражать электромагнитные волны, попадающие на входы воздухозаборников с переднего и боковых ракурсов, в сторону от источника облучения, тем самым, уменьшая общий уровень радиолокационной заметности самолета в этих ракурсах.
Формула изобретения
1. Самолет интегральной аэродинамической компоновки, содержащий фюзеляж, крыло, консоли которого плавно сопряжены с фюзеляжем, горизонтальное и вертикальное оперение, двухдвигательную силовую установку, отличающийся тем, что фюзеляж снабжен наплывом, расположенным над входом в воздухозаборники двигателей и включающим управляемые поворотные части, средняя часть фюзеляжа выполнена уплощенной и образована в продольном отношении набором аэродинамических профилей, мотогондолы двигателей разнесены друг от друга по горизонтали, а оси двигателей ориентированы под острым углом к плоскости симметрии самолета по направлению полета.

2. Самолет по п.1, отличающийся тем, что вертикальное оперение выполнено цельноповоротным с возможностью синфазного и дифференциального отклонения.
3. Самолет по п.2, отличающийся тем, что цельноповоротное вертикальное оперение установлено на пилонах, расположенных на боковых хвостовых балках фюзеляжа, при этом на фронтальной части пилонов расположены воздухозаборники продува мотоотсеков и теплообменников системы кондиционирования.
4. Самолет по п.1, отличающийся тем, что горизонтальное оперение выполнено цельноповоротным с возможностью синфазного и дифференциального отклонения.
5. Самолет по п.1, отличающийся тем, что реактивные сопла двигателей выполнены с возможностью синфазного и дифференциального отклонения.
6. Самолет по п.1, отличающийся тем, что входы воздухозаборников двигателей расположены по бокам носовой части фюзеляжа за кабиной экипажа, при этом нижняя кромка входов воздухозаборников двигателей расположена ниже обводов фюзеляжа.
7. Самолет по п.1, отличающийся тем, что входы воздухозаборников двигателей выполнены скошенными в двух плоскостях — относительно вертикальных продольной и поперечной плоскостей самолета.
8. Самолет по п.1, отличающийся тем, что плоскости хорд консолей цельноповоротного вертикального оперения отклонены от вертикальной плоскости на острый угол.
9. Самолет по п.1, отличающийся тем, что передние кромки поворотной части наплыва, консолей крыла и горизонтального оперения выполнены параллельными друг другу.
10. Самолет по п.1, отличающийся тем, что задние кромки крыла и горизонтального оперения выполнены параллельными друг другу.
Федеральная служба по интеллектуальной собственности (Роспатент)

Цельноповоротное горизонтальное оперение

Изобретение относится к конструкциям несущих поверхностей самолета и других летательных аппаратов. Предложенная конструкция включает балку оси вращения и продольные стенки, опирающиеся на нервюры. Ее отличие от известных заключается в том, что смонтированы передний лонжерон, опирающийся на балку оси вращения и на узел крепления привода несущей поверхности, и задний лонжерон, защемленный одним концом на балке оси вращения и опирающийся другим концом на передний лонжерон. Оси заднего лонжерона, балки оси вращения и торцевой нервюры пересекаются в одной точке. Балка оси вращения на всей длине выполнена из двух соединенных стенками силовых поясов, состоящих каждый из одной или нескольких пластин. Стенки и силовые пояса через прокладки жестко соединены с внешними кольцами, которые являются посадочными местами для подшипников крепления балки оси вращения к фюзеляжу. Конструкция характеризуется повышенной эксплуатационной надежностью. 1 ил.

Изобретение касается авиационной техники и, в частности, конструкции цельноповоротных несущих поверхностей (стабилизатора, киля, крыла и прочих агрегатов) самолета и других летательных аппаратов.

Известна конструкция цельноповоротного оперения с жестким креплением его на оси поворота (М.Н. Шульженко, «Конструкция самолетов», М.: Машиностроение, 1971 г. , стр. 175), в которой ось вращения представляет собой балку, состоящую из верхнего и нижнего поясов, соединенных стенками. Эта балка состыкована с осью круглого сечения, опирающейся на два подшипника. Подшипники крепятся на шпангоутах фюзеляжа. Балка оси вращения расположена по размаху оперения и для восприятия воздушной нагрузки соединена с нервюрами и обшивкой. Имеются передняя и задняя стенки, которые опираются на нервюры. Крутящий момент воспринимается контуром (обшивкой и стенками) и передается через торцевую нервюру на балку оси вращения. Привод поворотного стабилизатора крепится через качалку, расположенную на балке оси вращения. Недостатком известной конструкции является недостаточная надежность в работе, связанная с тем, что воздушная нагрузка передается на балку оси вращения через сдвиг обшивки при одновременном ее сжатии, что приводит к значительному увеличению ее толщины и соответственно веса конструкции. Для исключения указанного недостатка предлагается следующая конструкция: два лонжерона — передний и задний, балка оси вращения и две стенки. Передний лонжерон опирается на две опоры — на балку оси вращения и на узел крепления привода стабилизатора, соединенный с торцевой нервюрой, а задний лонжерон одним концом защемлен на балке оси вращения, а вторым опирается на передний лонжерон. При этом пересечение осей заднего лонжерона, балки оси вращения и торцевой нервюры выполнено в одной точке «С» (см. чертеж). Благодаря этому изгибающий момент, пришедший с заднего лонжерона, передается по двум направлениям — на балку оси вращения и на торцевую нервюру. Торцевая нервюра в свою очередь оперта на две опоры — точку привода и балку оси вращения. Остальные нервюры опираются на передний и задний лонжероны. Стенки опираются на нервюры и воспринимают крутящий момент. Таким образом местная, воздушная нагрузка собирается на силовые элементы каркаса и передается кратчайшим путем на фюзеляж. На чертеже изображена предлагаемая конструкция. Стабилизатор 1 включает наружную обшивку 2, крепящуюся на внутреннем каркасе, образованном передним лонжероном 3, балкой оси вращения 4 и задним лонжероном 5. Нервюры 6 опираются на указанные силовые элементы, а контур, работающий на кручение, образован обшивками и стенками 7 и 8, опирающимися на нервюры. Балка оси вращения 4 выполнена на всей длине в виде двух поясов, верхнего и нижнего, образованных для повышения живучести двумя или несколькими силовыми пластинами 9 и 10, соединенных между собой стенками 12. В зоне крепления к фюзеляжу балка оси вращения имеет кольца 13 и 14, закрепленные через прокладки 15 и 16 с поясами и через диафрагмы 17, 18 и 19 со стенками балки оси вращения. Кольца 13 и 14 являются посадочными местами для опорных подшипников, крепящихся на корпусе 20 летательного аппарата.

Формула изобретения

Конструкция цельноповоротной несущей поверхности летательного аппарата, включающая балку оси вращения, продольные стенки, опирающиеся на нервюры, отличающаяся тем, что смонтированы передний лонжерон, опирающийся на балку оси вращения и на узел крепления привода несущей поверхности, и задний лонжерон, защемленный одним концом на балке оси вращения и опирающийся другим концом на передний лонжерон, при этом оси заднего лонжерона, балки оси вращения и торцевой нервюры пересекаются в одной точке, балка оси вращения на всей длине выполнена из двух соединенных стенками силовых поясов, состоящих каждый из одной или нескольких пластин, при этом стенки и силовые пояса через прокладки жестко соединены с внешними кольцами, которые являются посадочными местами для подшипников крепления балки оси вращения к фюзеляжу.

РИСУНКИ

Рисунок 1

аэродинамическая схема

аэродинамическая схема

Рис. 1. Аэродинамические схемы самолёта.

аэродинами́ческая схе́ма самолёта. А. с. характеризует геометрические и конструктивные особенности самолёта. Известно большое число признаков, по которым характеризуют А. с., но в основном их принято различать: по взаимному расположению крыла и горизонтального оперения (ГО); числу крыльев — основных несущих поверхностей; расположению крыла относительно фюзеляжа; типу и расположению двигателей; диапазону Маха чисел полёта М∞; способу и методу взлёта и посадки.

В зависимости от взаимного расположения крыла и ГО выделяют следующие основные аэродинамические схемы.

Нормальная (обычная, рис. 1, а) А. с. — ГО (стабилизатор) расположено сзади (по полёту) крыла. Эта схема получила наибольшее распространение вследствие простого решения вопросов продольной устойчивости и продольной управляемости на всех режимах полёта. Наличие скоса потока за крылом уменьшает истинный угол атаки α ГО и тем самым обеспечивает высокую эффективность продольного управления на всех режимах полёта, включая и большие α. Только для нестреловидных крыльев большого удлинения может возникнуть опасность появления срыва потока на ГО при больших углах атаки. В обычных случаях при такой схеме может быть легко обеспечена потребная эффективность продольного управления. Характеристики продольной устойчивости летательных аппаратов нормальной А. с. для крыльев некоторых форм в плане при увеличении ее могут изменяться в неблагоприятную сторону — нелинейное нарастание скоса потока, которое наблюдается, например, у стреловидных крыльев, может привести к образованию статической неустойчивости. Эти особенности в значительной степени зависят от расположения ГО по высоте относительно плоскости крыла. Для обеспечения статической устойчивости самолёта нормальной А. с. положение его центра тяжести выбирается впереди фокуса аэродинамического всего самолёта, чему способствует само ГО, поскольку, как правило, оно значительно сдвигает аэродинамический фокус летательного аппарата назад.

«Бесхвостка» («Б», летающее крыло, если у самолёта нет фюзеляжа, рис. 1, б, в). У самолётов этой схемы ГО отсутствует, а в качестве органов продольного управления используют элевоны, элероны, закрылки, флапероны, которыми в этом случае осуществляется и поперечное (по крену) управление. Запас продольной статической устойчивости (см. Степень устойчивости) самолётов А. с. «Б» определяется взаимным положением его центра тяжести и аэродинамического фокуса крыла.

Главный недостаток «Б» заключается в малом плече органов продольного управления, расположенных на крыле. Вследствие этого для продольного управления (например, создания момента на кабрирование для выхода на большие углы атаки) необходимо прикладывать вертикальную силу, направленную вниз, в 1,5—2 раза большую, чем при нормальной схеме. Это приводит к неприятной для лётчика реакции самолёта, так называемой просадке (в первый момент после отклонения элевонов возникает отрицательное вертикальное ускорение), что в итоге приводит к увеличению времени переходного процесса при управлении. Кроме того, наличие статической устойчивости «Б» требует для обеспечения продольной балансировки самолёта значительных отклонений элевонов вверх, что уменьшает подъёмную силу и ухудшает аэродинамическое качество с ростом углов атаки. Наконец, взлёт и посадка самолёта этой А. с. осуществляется без использования механизации крыла, поскольку возникающий при её отклонении продольный момент практически нечем уравновесить. Это приводит к тому, что на «Б» необходимо устанавливать крыло большей площади, то есть с уменьшенной удельной нагрузкой на крыло. В последние годы появилась возможность в некоторой степени уменьшить этот недостаток путём применения автоматических систем управления летательным аппаратом с продольной статической неустойчивостью, так как в этом случае для продольной балансировки летательного аппарата элевоны отклоняют вниз, что увеличивает подъёмную силу. Необходимость обеспечения возможно большего плеча продольного управления на «Б» ограничивает использование благоприятных с точки зрения аэродинамического качества форм крыльев в плане. Вследствие указанного на «Б» приходится использовать крыло практически треугольной формы в плане и большой стреловидности, малое удлинение крыла (λ = 2—2,2).

Несколько типов сверхзвуковых самолётов А. с. «Б» были созданы фирмой «Конвэр» (F-102, F-106 и В-58). Эти самолёты обладали указанными выше недостатками. В течение многих лет фирма «Дассо» (см. также «Дассо-Бреге») выпускает истребители и бомбардировщики серии «Мираж» по А. с. «Б». В последних моделях самолётов «Мираж» используется продольная статическая неустойчивость и соответствующая автоматика в канале управления продольным движением. Для сверхзвуковых однорежимных самолётов, когда главным режимом является сверхзвуковой крейсерский полёт, можно «настроить» геометрию «Б» на этот режим и создать самолёт с высоким аэродинамическим качеством. Однако и в этом случае трудно обеспечить хорошие характеристики на взлёте и посадке. Удачными примерами решений для такого типа самолётов являются Ту-144 и «Конкорд».

«Утка» (рис. 1, г) — в этой схеме ГО (дестабилизатор) расположено впереди крыла и впереди центра тяжести самолёта. Главное достоинство схемы «утка» — осуществление продольной балансировки при помощи положительной подъёмной силы, приложенной к впереди расположенному ГО. Образование на самолёте моментов на пикирование (например, от отклонённой механизации крыла, отклонённого сопла двигателя и т. п.) должно быть уравновешено в этой схеме положительной подъёмной силой на оперении. Указанное свойство схемы позволяет рассчитывать на получение более высоких несущих свойств и более высокого аэродинамического качества самолёта. Однако при наличии продольной статической устойчивости эффективность продольного управления самолётом А. с. «утка» быстро теряется с увеличением угла атаки и этим самым ограничивается использование больших α. Введение статической неустойчивости позволяет, комбинируя отклонение органов продольного управления с отклонением закрылков и сопел, обеспечить продольное управление и на больших углах атаки с приростом подъёмной силы. «Утка» имеет и ряд компоновочных преимуществ с точки зрения размещения реактивных двигателей, вооружения и т. п.

Использование А. с. «утка» в практике самолётостроения пока имеет ограниченный опыт, хотя фирма «СААБ-Скания» использует эту схему при создании истребителей. Применение этой А. с. связано с необходимостью решения ряда сложных задач обеспечения боковой устойчивости и управляемости, особенно на больших углах атаки.

В некоторых случаях переднее оперение было применено для ограниченного использования с целью обеспечения продольной балансировки самолёта на взлёте и посадке (например, ХВ-70 фирмы «Норт Американ», Ту-144).

«Тандем» (рис. 1, д) — крайне редко используемая для самолётов А. с., представляющая сочетание двух крыльев, расположенных одно за другим. В зависимости от расположения органов продольного управления она может рассматриваться либо близкой к «утке» (ОУ на переднем крыле), либо близкой к нормальной схеме (ОУ на заднем крыле). Однако во всех случаях с точки зрения аэродинамического качества и общих лётных данных схема нерациональна, так как заднее крыло, будучи расположено в скосе потока переднего, имеет меньшие несущие свойства. Большая суммарная площадь крыльев предопределяет большое аэродинамическое сопротивление, что приводит к значительному снижению аэродинамического качества.

В ряде случаев по эксплуатационным особенностям оказались целесообразным устанавливать оперение не на фюзеляже, а на двух крепящихся к крылу балках (рис. 2). См. Двухбалочный самолёт.

По числу несущих поверхностей А. с. разделяют на монопланы, бипланы (рис. 3), полипланы. С 40-х гг. в основном применяются монопланы, так как эта схема наилучшим образом удовлетворяет требованиям достижения больших скоростей полёта. Примером удачного применения А. с. биплана для самолёта малых скоростей является самолёт Ан-2.

В зависимости от расположения крыла по высоте фюзеляжа различают А. с.: низкоплан, среднеплан, высокоплан, парасоль. Выбор расположения крыла по высоте часто диктуется рядом эксплуатационных требований (например, для транспортных самолётов высокоплан удобнее — проще обеспечивается загрузка и выгрузка самолёта; для магистральных пассажирских самолётов чаще используются низкопланы — безопасность, комфорт и т. п.), однако с точки зрения аэродинамики эти схемы очень существенно отличаются, главным образом по характеристикам боковой устойчивости и управляемости, а также по лобовому сопротивлению. Наименьшее сопротивление, особенно при переходе на сверхзвуковые скорости, имеет среднеплан, который чаще применяется для сверхзвуковых самолётов.

В зависимости от расположения двигателей на самолёте можно ввести следующее разделение А. с. Для самолётов с винтомоторной группой — схема с тянущими винтами и схема с толкающими винтами (рис. 4). Для самолётов с реактивными двигателями, помимо разграничения по числу двигателей, можно выделить А. с. с расположением двигателей на крыле; на фюзеляже; на крыле и фюзеляже (рис. 5). Различное расположение двигателей также часто диктуется эксплуатационными требованиями (уменьшение шума в кабине, уменьшение массы конструкции, безопасность при отказе двигателя и т. п.), но оно, безусловно, существенно сказывается на аэродинамических и весовых характеристиках самолёта и, следовательно, должно анализироваться с точки зрения летно-технических характеристик и общей эффективности самолёта.

А. с. в значительной степени определяется и диапазоном скоростей полёта; здесь классификацию можно провести достаточно чётко. А. с. дозвуковых самолётов рассчитывается на полёт в диапазоне чисел Маха M∞ = 0,8—0,9. Для неё характерны крылья и оперения малой стреловидности, достаточно больших удлинений и большой относительной толщины профиля, воздухозаборник с большими радиусами закруглений кромок. А. с. трансзвуковых самолётов (M∞ = 1,3—1,5). В этой области значений M∞ используются умеренные стреловидность и относительная толщина крыльев и оперения, нерегулируемый воздухозаборник с более острыми кромками. А. с. сверхзвуковых самолётов (М∞ до 3—3,5). Для уменьшения волнового сопротивления в этих схемах применяются малые относительные толщины, большая стреловидность крыльев (в том числе треугольные крылья) и оперений и крылья изменяемой в полёте стреловидности. Для самолётов с крылом изменяемой в полёте стреловидности характерна многорежимность полёта: за счёт использования малой стреловидности обеспечиваются приемлемые аэродинамические и летно-технические характеристики на малых и околозвуковых скоростях полёта. Для увеличения коэффициента восстановления полного давления на входе в двигатель используются регулируемые воздухозаборники. А. с. гиперзвуковых самолётов. Для самолётов со значениями M∞ = 4,5 и более А. с. в значительной степени определяется диапазоном значений M∞, назначением самолёта и типом применяемого двигателя. Для этой схемы характерна так называемая интеграция двигательной установки и самолёта. Главным требованием к такой схеме является необходимость обеспечения восприятия больших температур и тепловых потоков на поверхности самолёта.

По способам взлёта и посадки можно выделить следующие А. с. самолёта. А. с., обеспечивающая нормальный взлёт и посадку с разбегом и пробегом. Здесь заданные дистанции взлёта и посадки в основном обеспечиваются аэродинамикой самолёта и выбором умеренной тяговооружённости. А. с. самолёта короткого взлёта и посадки. В этом случае применяются специальные меры для увеличения подъёмной силы (например, за счёт использования энергетической механизации крыла, поворота сопел двигателей). А. с. самолётов вертикального взлёта и посадки. В этом случае должно быть обеспечено превышение вертикальной составляющей тяги силовой установки над весом самолёта либо за счёт подъёмных двигателей (см. также Подъёмно-маршевый двигатель), либо за счёт поворотных воздушных винтов. На таком самолёте, поскольку есть режим, когда скорость равна нулю, должна быть система газодинамического управления и стабилизации по всем трём осям координат с постепенным подключением обычных органов аэродинамического управления. Для самолёта короткого взлёта и посадки и самолёт вертикального взлёта и посадки возникают трудности с обеспечением устойчивости и управляемости самолёта и работоспособности двигателей на режимах взлёта и посадки из-за взаимодействия струй от работающих двигателей с землёй и самолётом.

Вместо термина «А. с.» часто пользуются терминами «аэродинамическая компоновка», «компоновка», «схема» самолёта.

Г. С. Бюшгенс.

Рис. 2. Двухбалочный самолёт.

Рис. 3. Бипланы и монопланы.

Рис. 4. Компоновка винто-моторных силовых установок.

Рис. 5. Установка турбореактивного двигателя на самолёте.

Энциклопедия «Авиация». — М.: Большая Российская Энциклопедия. Свищёв Г. Г.. 1998.

Технологии

Идеальный самолёт. Самолёт «интегральной схемы»

Российский авиационный консорциум в кооперации с рядом научно-исследовательских институтов и промышленных предприятий нашей страны разрабатывает проект магистрального пассажирского лайнера перспективной аэродинамической комбинированной «интегральной схемы». В ее основе — единая конструкция крыла и фюзеляжа овального, а не традиционно круглого сечения. Представленный на Международном авиакосмическом салоне МАКС-2007 проект вызвал интерес отечественных и зарубежных специалистов.

Технический уровень самолета, как известно, определяют аэродинамика, двигатели, конструкция планера, применяемые материалы, совершенство оборудования. При сохранении основных традиционных элементов — фюзеляжа, крыльев, оперения, т. е. практически неизменном внешнем виде, авиационная техника за последние годы внутренне изменилась радикально. Образцы современных поколений имеют более экономичные и менее шумные двигатели, конструкции планера, уменьшающие сопротивление воздушного потока, принципиально изменены применявшиеся ранее электродистанционные системы управления полетом — информация отображается на электронных и жидкокристаллических дисплеях, более совершенными стали устройства обеспечения жизнедеятельности, появилось спутниковое навигационное оборудование. Для повышения надежности в аварийных ситуациях используется перекрестное резервирование систем, что также улучшает характеристики летательного аппарата.

Цель внедрения всех новшеств — не только обеспечение безопасности пассажиров и экипажа, но и повышение аэродинамического качества, а в результате — достижение больших дальности и высоты полета при сокращении расхода топлива и прямых эксплуатационных расходов.

Улучшить аэродинамику можно двумя способами. Первый предполагает значительное изменение внешнего облика машин, например, переход к схеме «летающее крыло». В ней отсутствуют традиционные фюзеляж и оперение, их функции выполняет треугольное крыло. В итоге уменьшается аэродинамическое сопротивление, равномернее распределяются нагрузки, что позволяет облегчить всю конструкцию. Второй способ можно реализовать на самолетах любых схем за счет модификации крыла и оперения, применения специальных систем управления ламинарным обтеканием. В чем его суть?

Напомним: крыло создает подъемную силу лишь при движении относительно воздуха. Летательный аппарат, раздвигающий воздушную среду, вызывает ее возмущение, характеризующееся прежде всего силой лобового сопротивления. Она зависит от скорости и высоты полета. Поскольку воздух вязкий, на границе его потока и профиля крыла возникает тонкий его слой (несколько сантиметров при движении с дозвуковой скоростью), как бы «приклеенный» к крылу и движущийся вместе с ним. Это пограничный слой. Поведение его зависит от размеров профиля крыла и скорости обтекания воздухом. Само же течение может быть ламинарным (упорядоченным), когда каждая частица среды движется параллельно основному потоку, а все они — как бы слоями, или турбулентным (беспорядочным, хаотичным), и сопротивление трения при нем в 2 — 3 раза выше. В первом случае аэродинамическое качество самолета, его летно-технические и экономические характеристики повышаются на 15 — 20%. Вот почему конструкторы стремятся создать профили крыла, в условиях полета обеспечивающие максимальную ламиниризацию, т.е. упорядочивание движения воздушных частиц в пограничном слое, а следовательно, и уменьшение сопротивления трения.

Магистральным путем развития авиации на длительную перспективу станет разработка новых аэродинамических схем. Одно из многообещающих решений подобного рода — «летающее крыло». Как и ламиниризация пограничного слоя, оно позволяет значительно уменьшить сопротивление трения в полете за счет снижения относительной омываемой

воздухом поверхности самолета. Известно, что для обычной его схемы этот показатель равен примерно пяти единицам, для «летающего крыла» — чуть больше двух. Отсюда вывод: именно «летающее крыло» обеспечивает максимальное аэродинамическое качество. Важно, что на больших профилях, реализованных по этой схеме, можно получить также эффект естественной ламиниризации. И на протяжении многих десятилетий конструкторы не оставляют намерения разработать эффективную машину такого рода.

Кстати, идея «летающего крыла» родилась практически в одно время с проектами традиционных (фюзеляжных) летательных аппаратов. Первый патент на такую схему был выдан еще в 1853 г. французскому изобретателю М. Лу. Уже тогда он предусмотрел рули высоты и направления, вертикальный стабилизатор, колесное шасси. Все последующие годы одновременно с внедрением фюзеляжных самолетов в мире проводили интенсивные поиски оптимальных конструкций «летающего крыла». Сегодня хорошо известны опытные разработки немецких ученых и конструкторов, включая многие ранее секретные, проводившиеся в 1930 — 1940-е годы. Обширные изыскания вели и в США, что позволило в 1946 г. фирме «Нортроп» построить первый в мире серийный четырехмоторный самолет названной схемы с размахом крыла 52,4 м и взлетным весом более 100 т.

Соответствующий огромный теоретический и практический опыт накоплен и в нашей стране. Отметим исследования в Центральном аэрогидродинамическом институте им. Н. Е. Жуковского, выполненные в 40 — 90-е годы XX в. под руководством академиков Георгия Бюшгенса и Георгия Свищева, а совсем недавно — доктора технических наук Леонида Шкадова, экспериментальные полеты самолетов БИЧ-3 (1926 г.) и БИЧ-7А (1933 г.) (главный конструктор Борис Черановский), революционные проекты авиаконструктора Роберта Бартини, в том числе истребитель с крылом указанного типа, и др.

Сегодня интерес к «летающему крылу» усилился вновь. Известно около 20 оригинальных конструкций беспилотных летательных машин, уже выпускающихся серийно, и около 10 проектов гражданских, находящихся на разных этапах создания. К сожалению, эксперименты выявили серьезные нерешенные проблемы в обеспечении их устойчивости и управляемости. Пока никому не удается выполнить в полном объеме требования, предъявляемые в этой связи действующими нормами летной годности, поэтому поиск продолжается.

Одновременно развивались работы над самолетами так называемых «интегральных схем», в которых объединены силовая конструкция фюзеляжа и крыла. Такой подход внедрен в военной технике с изменяемой геометрией крыла (классическим примером может служить отечественный стратегический бомбардировщик Ту-160, впервые поднявшийся в воздух в 1981 г.). Первоначально необходимость подобного подхода диктовали компоновочные требования, связанные с размещением крупногабаритного, мощного узла поворота крыла. Затем было выявлено, что плавные обводы, характерные для данных аэродинамических схем, способствуют решению задач, связанных с радиолокационной заметностью боевых самолетов. И тогда, чтобы сделать их «невидимыми», потребовался возврат к «летающему крылу» в чистом виде, реализованному, например, в бомбардировщике В-2 (США), созданном в начале 1990-х годов.

Несколько лет назад мы высказали идею о необходимости объединения двух рассмотренных выше схем («интегральной» и «летающего крыла») для нахождения оптимального решения, свободного от недостатков предыдущих. Разработка названа «интегральное летающее крыло с хвостовым оперением» и запатентована в 2004 г. Забегая вперед, отметим: после демонстрации моделей нового нашего самолета на МАКС-2007 за рубежом ввели соответствующее ей специальное международное обозначение «Tailed Integral Flying Wing — TIFW».

С самого начала мы руководствовались следующими соображениями. Во-первых, реализация указанной идеи позволит примерно на 45% сократить относительную омываемую поверхность аппарата. И хотя это меньше, чем достижимо при применении «летающего крыла», но взамен мы получим хвостовое оперение классического типа со стандартными рулями, что, в свою очередь, поможет успешно решить проблемы устойчивости и управляемости машины. Во-вторых, «интегральная схема» позволит существенно уменьшить массу конструкции. В-третьих, удастся добиться интерференции между элементами планера, в частности, решить проблемы соединения «крыло-фюзеляж». Наконец, формирование носовой части фюзеляжа обеспечит продольную устойчивость самолета на больших углах атаки, а также облегчит визуальный обзор из кабины экипажа.

Самым сложным оказался выбор формы и конструкции фюзеляжа. Мы остановились на овальном его сечении, являющемся аналогом «рабочей зоны» пассажирского салона широкофюзеляжного лайнера. При этом выяснили: есть дополнительная возможность сократить относительную омываемую поверхность самолета и даже уменьшить расчетное лобовое сопротивление воздуха. Оставалось позаботиться об оптимальном размещении грузовых помещений. Было решено планировать их зону на одном уровне с пассажирским салоном с учетом того, что при большой ширине фюзеляжа овальной формы можно увеличить число кресел в каждом ряду. То есть длину салона можно уменьшить без сокращения его вместимости.

Конечно, вышеописанное отражает лишь небольшую часть группы вопросов и проблем, возникавших на начальном этапе конструирования.

Для общей оценки характеристик проекта мы провели предварительные исследования схемы «интегральное летающее крыло с хвостовым оперением» на примере среднемагистрального самолета класса Ту-154 (150 — 180 пассажиров). На всех этапах работ использовали методологию так называемого «полного электронного определения изделия», другими словами, построение интегрированного информационного поля, сквозного по всем этапам жизненного цикла машины. Создали ее компьютерные модели, по электронной документации изготовили демонстрационные их аналоги в масштабе 1:20 (размах ~ 2м) для испытаний в аэродинамической трубе.

Первые же опыты, проведенные совместно со специалистами ЦАГИ им. Н. Е. Жуковского (руководитель работ — заместитель начальника института Геннадий Павловец), в основном подтвердили изложенные выше предпосылки. На всех режимах получены значения аэродинамического качества на уровне лучших современных фюзеляжных лайнеров, а на скоростях, соответствующих М-числам более 0,75, превышающие достигнутые ими показатели на 1 — 3 единицы. Выявлены значительные резервы для улучшения летных характеристик. С учетом повышения числа Рейнольдса в натурных условиях для реального самолета можно ожидать еще больших значений аэродинамического качества.

По результатам расчетов, аэродинамических испытаний, электронного моделирования, апробации образцов разработаны две схемы: принципиальная и технологического членения. Одновременно рассмотрены разные компоновки салона: пассажирский вариант вместимостью от 50 до 180 человек, грузовой с контейнерной загрузкой и смешанный. Машина получила условное обозначение ИС-1 (интегральная схема: первый вариант).

Жизненный цикл аппарата, включающий время многолетней эксплуатации, планируется «пропитать» стандартами и нормативами с использованием единой системы управления данными о конкретном изделии. Утвержденная внешняя геометрия, реализованная в виде математического описания поверхности фюзеляжа и крыльев, стала основой для электронного макетирования конструкции на этапе проектирования. Далее предполагается соединить все составляющие нескольких систем управления жизненным циклом изделия, вопросов производственных, кадровых, финансовых ресурсов, качества исполнения. Принципиальное свойство планируемых технологий — сквозная компьютерная привязка всех этапов работ с электронным безбумажным документооборотом к сетевым вычислительным структурам.

Поскольку с точки зрения выбора силовой установки предложенная схема не предъявляет никаких специальных требований, самолет можно оснащать любыми двигателями, подходящими по размерности и габаритно-массовым характеристикам. Работы на этом этапе проводили с их образцами нового поколения, готовящимися к выпуску в пермском ОАО «Авиадвигатель» (генеральный конструктор, доктор технических наук Александр Иноземцев). Определение состава и структурных схем радиоэлектронного оборудования выполнили специалисты московской холдинговой компании «Авиаприбор» (генеральный конструктор, доктор технических наук Сергей Крюков).

Серьезные дискуссии вызвал поиск параметров фюзеляжа. Исследования подтвердили возможность создания интегральной герметичной конструкции овального поперечного сечения с прочностными и массовыми характеристиками, превосходящими те, которыми обладают фюзеляжи с круглым поперечным сечением.

Во всех работах в инициативном порядке участвовало содружество ученых ЦАГИ им. Н. Е. Жуковского, холдинговой компании «Авиаприбор», Сибирского научно-исследовательского института авиации им. С. А. Чаплыгина (Новосибирск), Российского авиационно-технологического университета им. К. Э. Циолковского (МАТИ). Принципиально важным было мнение ряда отечественных авиакомпаний, которые провели маркетинговые исследования и подтвердили рыночную необходимость рассматриваемого проекта.

В итоге был предложен среднемагистральный самолет (класса Ту-154 или Ту-204) со взлетной массой, не превышающей 65 т, для перевозки 180 пассажиров на дальность 3900 км или 150 пассажиров — на 5300 км (современный уровень 100 т). Максимальная крейсерская скорость 950 км/ч. Топливная эффективность (расход топлива на перевозку одного пассажира) при этом может быть обеспечена на уровне 14 — 15 г на пассажирокилометр, что лучше, чем на всех известных отечественных и западных уже эксплуатирующихся или проектируемых лайнерах сходной вместимости и предполагаемой дальности полета. Все весовые и экономические показатели могут быть значительно улучшены путем применения в конструкции самолета новых композиционных материалов.

Обратим внимание на габариты ИС-1: размах крыла не более 35 м, общая длина машины 38 м, высота около 9 м. По всем характеристикам самолет совместим с существующими аэродромами и не потребует никаких изменений в действующих правилах полетов.

Но если пути решения основных технических проблем можно считать в основном ясными, то организационная сторона реализации проекта содержит много вопросов. Российская гражданская авиация еще не вышла из кризиса. Устарел ее парк советского производства — истек или истекает срок эксплуатации сотен единиц техники. Новые отечественные машины (Ту-204, Ту-214, Ту-334, Ил-96, Ан-148, Ан-140), разработанные в 80 — 90 годах XX в., имеют характеристики, не в полной мере удовлетворяющие авиакомпании по экономическим критериям, особенно в условиях постоянного роста цен на материалы и энергоносители. Вместе с тем использование у нас старых западных самолетов, имеющих топливную эффективность, близкую к показателям новых отечественных машин, попытки снятия таможенных пошлин на импортную технику, копирование решений зарубежных конструкторов в перспективе губительны как для промышленности России, так и ее воздушного транспорта: повторяя чужие наработанные технологические модели, мы обрекаем себя на роль отстающего.

Авиационной промышленности страны нужен проект самолета, технический уровень которого должен быть выше мирового. По нашему мнению, он обеспечит реализацию накопленного потенциала всех сохранившихся участников системы и будет способствовать восстановлению авторитета России на мировом рынке авиатехники. И в современных условиях наиболее реальной в этом смысле может быть схема организации строительства самолета типа ИС-1 в рамках общенациональной программы с государственными гарантиями и частичным бюджетным финансированием в качестве одного из проектов недавно созданной Объединенной авиастроительной корпорации.

Новый самолет живет в эскизах, чертежах, моделях. Разработанное инициативно техническое предложение ожидает стратегических решений.

Доктор технических наук Валентин КЛИМОВ, главный конструктор, Даниил ГАПЕЕВ, заместитель главного конструктора, Российский авиационный консорциум

СИСТЕМЫ КООРДИНАТ, ПРИМЕНЯЕМЫЕ В^ДИНАМИКЕ ПОЛЕТА

При задании уравнений движения и определении ускорений, скоростей и перемещений| систему координат, используемую в ка­честве системы отсчета, удобно связывать с Землей или инерциаль­ным пространством. J В соответствии с ГОСТ 20058—80 к таким си­стемам относятся инерциальная, земная, и стартовая.^

Для характеристики системы координат необходимо задать положение начала координат, некоторое опорное направление и основную плоскость. Все системы координат, используемые в дина­мике полета, в соответствии с ГОСТ 20058—80 являются правыми.

Инерциальная (абсолютная геоцентрическая экваториальная) си­стема координат 0„XuY„Za (рис. 1.2). Начало координат Оа по­мещается в центре Земли, основной является плоскость экватора OaXuZa, за опорное принимается направление ОиХи, параллельное линии Земля—Солнце в день весеннего равноденствия. Ось OnZ„ направлена вдоль оси вращения Земли в сторону северного полюса.

Эта система координат принята за инерциальную, потому что направление осей координат не зависит от времени, а ускорением центра Земли в ее движении относительно Солнца можно пренебречь.

Земная (вращающаяся геоцентрическая экваториальная) система координат O0X0Y0Z0 (см. рис. 1.2, точка О0 совпадает с Ои). Она от­личается от инерциальной системы тем, что ее оси О0Х0 и O0F0 свя­заны с ‘Землей и вращаются вместе с ней вокруг оси O0Z0 = 0„Z„

с угловой скоростью £о3 Земли. Опорное направление О0Х0 пересе­кает гринвичский меридиан, образуя переменный угол (oaS0 с осью 0иХи, где S0 — звездное время на гринвичском меридиане. Поло­жение самолета относительно этой подвижной системы отсчета определяют сферическими, так называемыми географическими коор­динатами: К — географическая долгота; <р — географическая ши­рота; г — расстояние самолета от центра Земли. Система O0X0YcZ0, вообще говоря, неинерцйальна, однако в ряде задач ее неинерци — альноегью пренебрегают. ‘

В качестве земной системы координат может быть принята и другая система координат, начало и оси которой фиксированы по отношению к Земле и выбираются в соответствии с задачей. При­мером такрй системы является стартовая.

Стартовая система координат O0XcYcZc или OcXcY,.Zc (рис. 1.3)— система, начало которой расположено либо в центре Земли О0, либо на поверхности Земли в точке 0С старта самолета . Основная пло­скость OcXcZc касается поверхности Земли в точке старта. Ось ОсХс направлена на север по касательной к географическому меридиану, ось OcYc направлена по продолжению радиуса, соединяющего, центр Земли с точкой старта, ось OcZc расположена по касательной к па­раллели и направлена на восток. Эта система координат — неинер­циальная и вращается вместе с Землей. Траекторию самолета опре­деляют обычно относительно стартовой системы отсчета. і Ускорение, скорость и перемещение самолета определяются обы­чно в земной или стартовой системе. Скорость самолета относительно

земной или стартовой системы отсчета называется земной скоростью

и обозначается Кк. ІИнерциальная система используется при оценке переносных кориолисовых сил и моментов, обусловленных вращением Земли, если учитывается неинерциальность системы отсчета, свя­занной с Землей.!

Для записи векторных уравнений движения в проекциях исполь­зуются подвижные системы координат, начало которых О условно помещают в центр масс самолета. Для таких систем координат необходимо задать опорное направление и основную плоскость по отношению к системе отсчета (например, к земной) или, что тоже самое — эйлеровы углы, определяющие положение осей OXYZ в системе 0°X°Y°Z°, а также угловые скорости со*, со*, и со*.

В простейшем случае оси системы OXYZ можно задать совпада­ющими с осями O0XnY0Z0 независимо от перемещений самолета относительно Земли. Тогда систему координат OXYZ с точностью до положения начала координат можно считать совпадающей с зем­ной, углы Эйлера и угловые скорости сох, со*, и со* — нулевыми.

В общем случае система OXYZ вращается по отношению к O0X0K0Z0>|K таким подвижным системам координат относятся нор­мальная, связанная, скоростная, полусвяз’йнная, траєкторная (ГОСТ 20058—80), а также введенная зДесь для удобства кинемати­ческая.

Нормальная система координат OXgYgZg (рис. 1.4). Вертикаль-

—— р. — V

ная ось OYb направлена по продолжению радиуса-вектора О0О = г, соединяющего центр Земли с центром масс самолета. Основная пло­скость OXgZe совпадает с местной горизонтальной плоскостью, т. е. плоскостью, проходящей через точку О. и перпендикулярной О Kg.

Точка пересечения А радиуса-вектора г с поверхностью Земли опре­деляет географические координаты самолета К и <р и описывает трассу полета. Ось OXg направлена на север параллельно географи­ческому «меридиану, ось OZg расположена параллельно касатель­ной к географической параллели в направлении с запада на восток. Углы ^ и ф задают также положение нормальной системы коорди­нат относительно земной.

При перемещении самолета нормальная система координат

вследствие кривизны поверхности Земли поворачивается относи-

—►

тельно стартовых осей с угловой скоростью сокр, которая может быть представлена в виде суммы угловых скоростей двух элементар­ных вращений, связанных с изменением долготы и широты самолета:

-V 7″ -«

соКр = X + ф. Первый вектор этой суммы направлен вдоль оси OaZ0, второй лежит в плоскости экватора перпендикулярно к плоскости местного меридиана.

Связанная система координат OXYZ (рис. 1.5). Основная пло­скость OXY является плоскостью симметрии самолета. Оси связан­ной системы совпадают с продольной ОХ, нормальной OY и попереч­ной OZ осями самолета. Направление продольной оси может быть

/ — местная горизонтальная плоскость; 2 — плоскость симметрии самолета; .‘ї — вертикальная плоскость, содержащая

ось ОХ выбрано или по базовой оси самолета , или но проекции средней аэродинамической хорды (САХ) на плоскость симметрии самолета, или по главной продольной оси инерции самолета. Положение продольной оси должно специально оговариваться. Связанная си­стема жестко фиксирована по отношению к самолету и ее положение относительно нормальной системы определяет пространственное по­ложение самолета. Оно характеризуется эйлеровыми углами рыска­ния, тангажа и крена.

Углом рыскания ф называется угол между осью 0Хе нормальной системы координат и проекцией продольной оси ОХ на горизон­тальную плоскость OXgZg нормальной системы координат. Угол рыскания положителен, когда ось 0Xg совмещается с проекцией про­дольной оси на горизонтальную плоскость поворотом вокруг оси 0Yg против часовой стрелки, если смотреть с конца этой оси.

Угол тангажа ft — это угол между продольной осью самолета ОХ и местной горизонтальной плоскостью. Угол тангажа положителен, когда продольная ось находится выше горизонтальной пло­скости.

Угол крена у — это угол между поперечной осью 0Z и осью 0Zg нормальной системы координат, смещенной в горизонтальной пло­скости в положение, соответствующее нулевому углу рыскания, или, что тоже самое, между нормальной осью 0Y и вертикальной плоскостью, содержащей продольную ось ОХ. Угол крена положи­телен, когда смещенная ось 0Zg совмещается с поперечной осью поворотом вокруг продольной оси против часовой стрелки, если
смотреть — с конца оси. Векторы производных яр, у и ft направлены, как это показано на рис. 1.5.

Связанная система, как правило, используется при анализе углового движения самолета. В проекциях на оси этой системы мо­гут задаваться аэродинамические силы (продольная, нормальная и поперечная) и моменты (крена, рыскания и тангажа соответственно), действующие на самолет в полете.

Скоростная (аэродинамическая) система координат OXaYaZa. Эта система используется, в основном, для определения аэродина­мических сил, действующих на самолет. Поэтому основное направ­ление в этой системе — направление воздушной скорости самолета

V — его скорости относительно воздушной среды. Если воздух неподвижен, воздушная скорость совпадает с земной. При наличии

ветра, имеющего скорость W относительно Земли:

VK = V + W.

Скоростная ось 0Ха (рис. 1.6) направлена вдоль воздушной ско-

—^

рости V самолета, ось подъемной силы помещается в плоскости сим­метрии самолета и направлена к верхней части самолёта, боковая ось 0Za образует с осями 0Ха и OYa правую систему координат.

Положение самолета относительно воздушного потока, опреде­ляющее величину аэродинамических сил, задается двумя углами а и определяющими относительное положение связанной и ско-. ростной систем координат.

Угол атаки а — угол между продольной осью ОХ самолета и

—У » ‘ ‘

проекцией воздушной скорости V на плоскость симметрии самолета.

ЧУгол скольжения Р измеряют между вектором Воздушной скоро-

—►

сти У и плоскостью симметрии самолета. . ?;

Положительные направления отсчета углов атаки и скольжения показаны на — рис. 1.6. У

Обычно при определении углов атаки и скольжения использу­ется связанная система, ось ОХ которой ориентирована по проек­ции САХ крыла.

В некоторых случаях рассматривают пространственный угол атаки а„, т. е. угол между продольной осью самолета и воздушной скоростью. Угол ал всегда считается положительным. .

По отношению к нормальной системе координат скоростная си­стема повернута на углы гра, #а и уа — скоростные углы рыскания, тангажа и крена, введённые по аналогии с эйлеровыми углами г|5, ■6 и у для связанной системы (рис. 1.7).,

В ряде случаев удобно использовать систему координат, про­межуточную между связанной и скоростной — полусвязанную.

Полусвязанная система координат OXeYJZe. Ее ось 0Хе сов-

. • * —►

падает с проекцией вектора воздушной скорости V на плоскость симметрии самолета, ось QYf— с осью подъемной силы QY9 в ско-

ростной системе, 0Ze — с поперечной осью в связанной. Таким об­разом, система OXeYjLt повернута относительно скоростной на угол скольжения Р вокруг 0Ye = 0Ya и относительно связанной на угол. атаки а вокруг 0Zt = OZ.

При анализе движения самолета относительна Земли систему

координат удобно строить на базе земной У„ (а не воздушной, V) скорости. Соответствующая система координат называется траектор­ией. ^ : ‘ • W; ‘,

Траєкторная система координат OX, tY^Z„ (рис.. 1.8). Ось 0ХЯ

совпадает с Управлением земной скорости Ук самолета. феьОХ» помещается в вертикальную плоскость, проходящую через ось ОХк, и направлена вверх от поверхности Земли. Ось 02к образует правую систему координат. По отношению к нормальной траектор-

; ч . “*■

ная система координат повернута на углы ¥ и 0. Векторы 0 н? показаны На рйс. 1.8.

Угол пути Ч’ — угол между проекцией У* на местную горизон­тальную плоскость OXgZg (путевой скоростью Уп) и направлением оси ОХд. Угол наклона траектории в образован направлением зем­ной скорости Ук и местной горизонтальной плоскостью 0X8Zg.

При отсутствии ветра оси 0Ха и ОХк совпадают, угол пути Y совпадает со скоростным углом рыскания фа, угол наклона траекто­рии 0 равен скоростному углу тангажа Фа*

Для удобства может быть дополнительно введена кинематическая система ко­ординат, промежуточная между связанной и траекторией.

Кинематическая система координат OXcYcZc. Ось 0ХС совпадает с осью 0ХК траекторией системы, ось 0YC лежит в плоскости. симметрии самолета и 0ZC об-‘ разует правую систему координат. По отнеяпению корректорной кинематическая система повернута иа кинематический угол крена ус вокруг оси 0ХС = ОХк н

Ш

при отсутствии ветра совпадает со скоростной. При наличии ветра ус Ф у0. В ки­нематической системе по аналогии со скоростной можно определить кинематические угол атаки ас и угол скольжения Рс, совпадающие при отсутствии ветра с истин­ными (воздушными) углами атаки и скольжения Кинематическая система удобна для описания опорного движения при анализе влияния ветра на движение самолета.