Орбита спутников GPS

GPS vs ГЛОНАСС: какая система лучше

Спутниковые системы позиционирования и навигации, изначально разрабатывавшиеся для военных нужд, в последнее время находят широкое применение в гражданской сфере. GPS/ГЛОНАСС мониторинг транспорта, наблюдение за нуждающимися в опеке людьми, контроль перемещений сотрудников, слежение за животными, отслеживание багажа, геодезия и картография – это основные направления использования спутниковых технологий.

В настоящее время существует две глобальных системы спутникового позиционирования, созданных в США и РФ, и две региональных, охватывающих Китай, страны Евросоюза и еще ряд стран Европы и Азии. В России доступен ГЛОНАСС мониторинг и GPS мониторинг.

Системы GPS и ГЛОНАСС

GPS (Global Position System, Глобальная система позиционирования) – это спутниковая система, разработка которой началась в Америке с 1977 года. К 1993 программу развернули, а к июлю 1995 – добились полной готовности системы. В настоящее время космическая сеть GPS состоит из 32 спутников: 24 основных, 6 резервных. Они вращаются вокруг Земли по средневысокой орбите (20 180 км) в шести плоскостях, по четыре основных спутника в каждой.

На земле расположена главная контрольная станция и десять станций слежения, три из которых передают спутникам последнего поколения корректировочные данные, а те распределяют их на всю сеть.

Разработка системы ГЛОНАСС (Глобальной навигационной спутниковой системы) начата еще в СССР в 1982 году. О завершении работ заявили в декабре 2015 года. Для работы ГЛОНАСС требуется 24 спутника, для покрытия территории и РФ достаточно 18, а общее число спутников, находящихся в данный момент на орбите (включая резервные) – 27. Они также движутся по средневысокой орбите, но на меньшей высоте (19 140 км), в трех плоскостях, по восемь основных спутников в каждой.

Орбитальные спутники ГЛОНАСС

Наземные станции ГЛОНАСС расположены в России (14), Антарктиде и Бразилии (по одной), намечается развертывание ряда дополнительных станций.

Предшественником системы GPS была система Transit, разработанная в 1964 году для управления запуском ракет с подводных лодок. Она могла определить местонахождение исключительно неподвижных объектов с точностью до 50 м, а единственный спутник находился в поле видимости всего один час в сутки. Программа GPS ранее носила названия DNSS и NAVSTAR. В СССР создание навигационной спутниковой системы велось с 1967 года в рамках программы «Циклон».

Основные отличия системs мониторинга ГЛОНАСС от GPS:

  • американские спутники движутся синхронно с Землей, а российские – асинхронно;
  • разная высота и количество орбит;
  • разный угол их наклона (около 55° для GPS, 64,8° для ГЛОНАСС);
  • разный формат сигналов и рабочие частоты.
  • Преимущества системы GPS

  • GPS – старейшая из существующих систем позиционирования, приведена в полную готовность раньше российской.
  • Надежность обусловлена использованием большего числа резервных спутников.
  • Позиционирование происходит с меньшей погрешностью, чем у ГЛОНАСС (в среднем 4 м, а для спутников последнего поколения – 60–90 см).
  • Множество устройств поддерживает систему.

Принцип работы системы GPS

Преимущества системы ГЛОНАСС

  • Положение асинхронных спутников на орбите более стабильное, что облегчает управление ими. Регулярное внесение корректив не требуется. Данное преимущество важно для специалистов, а не потребителей.
  • Система создана в России, поэтому обеспечивает уверенный прием сигнала и точность позиционирования в северных широтах. Это достигается за счет большего угла наклона спутниковых орбит.
  • ГЛОНАСС – это отечественная система, и останется доступной для россиян в случае отключения GPS.
  • Недостатки системы GPS

  • Спутники вращаются синхронно вращению Земли, поэтому для точного позиционирования требуется работа корректирующих станций.
  • Низкий угол наклона не обеспечивает хорошего сигнала и точного позиционирования в полярных областях и высоких широтах.
  • Право управления системой принадлежит военным, а они могут искажать сигнал или вообще отключить GPS для гражданских лиц или для других стран в случае конфликта с ними. Поэтому хотя GPS для транспорта точнее и удобнее, а ГЛОНАСС – надежнее.
  • Недостатки системы ГЛОНАСС

  • Разработка системы началась позже и до недавнего времени велась со значительным отставанием от американцев (кризис, финансовые злоупотребления, хищения).
  • Неполный комплект спутников. Продолжительность службы российских спутников ниже, чем американских, они чаще нуждаются в ремонте, поэтому точность навигации в ряде областей снижается.
  • Спутниковый мониторинг транспорта ГЛОНАСС дороже, чем GPS из-за высокой стоимости устройств, адаптированных к работе с отечественной системой позиционирования.
  • Недостаток программного обеспечения для смартфонов, КПК. Модули ГЛОНАСС проектировали для навигаторов. Для компактных портативных устройств на сегодняшний день более распространенный и доступный вариант – это поддержка GPS-ГЛОНАСС или только GPS.

«Глонасс-М» – основные спутники системы ГЛОНАСС с 2003 года

Резюме

Системы GPS и ГЛОНАСС являются взаимодополняемыми. Оптимальное решение – это спутниковый GPS-ГЛОНАСС мониторинг. Устройства с двумя системами, например, GPS-маркеры с ГЛОНАСС-модулем «М-Плата» обеспечивают высокую точность позиционирования и уверенную работу. Если для позиционирования исключительно по ГЛОНАСС погрешность в среднем составляет 6 м, а для GPS – 4 м, то при использовании двух систем одновременно она снижается до 1,5 м. Но такие приборы с двумя микрочипами стоят дороже.

ГЛОНАСС разработана специально для российских широт и потенциально способна обеспечить высокую точность, из-за ее недоукомплектованности спутниками реальное преимущество пока на стороне GPS. Плюсы американской системы – это доступность и широкий выбор устройств с поддержкой GPS.

После заявления вице-премьера Дмитрия Рогозина о том, что Россия с 1 июня приостановит работу 11 наземных станций GPS на своей территории и что, возможно, с 1 сентября работа этих станций может быть полностью прекращена, офисные хомячки всполошились не на шутку. Как же теперь они найдут дорогу к холодильнику без GPS? И смогут ли попасть на работу, если навигатор в машине не подскажет, где нужно повернуть?

Вместо того, чтобы разобраться в том, а зачем же вообще нужны эти станции, они начали сеять буквально панику на просторах интернета. Ведь ГЛОНАСС есть далеко не во всех телефонах и навигаторах.

Сегодня я расскажу вкратце о том, для чего используются базовые станции GPS, и действительно ли без них мир рухнет.

Во-первых разберемся из-за чего такая буча началась. Заявляения вице-премьера и дальнейшие действия являются симметричным ответом правительства России на отказ США размещать на своей территории станции коррекции сигнала российской навигационной системы ГЛОНАСС. А любая глобальная навигационная система, будь то российская ГЛОНАСС, американская GPS, европейская GALILEO, или китайская COMPASS создавались в первую очередь для применения в военных целях (грубо говоря, чтобы ракеты точнее наводить), а различные гражданские области применения — лишь побочный продукт. И в свете последних событий на политической арене, такие заявления нашего правительства являются вполне разумными.

Все, наверное, видели видеосюжеты в новостях про сверхточное оружие. Вот некоторая статистика: в операции «Буря в пустыне» лишь около 10% применявшейся боевой техники американцами использовали систему GPS для точного наведения, а уже в конфликте в Косово, GPS использовалась в 95% случаев для тех же целей.

Так для чего же нужны наземные станции?

На наземных станциях установлены приемники GPS для пассивного слежения за навигационными сигналами спутников, входящими в систему. После получения со спутника, информация передается, где впоследствии обрабатывается на главную управляющую станцию. Эти данные используются для обновления эфемерид спутников.

Эфемериды – это таблица, содержащая координаты небесного тела, приведенная в различные периоды времени за определенный период. Астрономы и геодезисты используют эфемериды для определения положений небесных тел, которые берутся в дальнейшем для вычисления координат точек на поверхности Земли.

Для нас GPS эфемериды можно сравнить с GPS спутниками, и представить их в качестве созвездия искусственных звезд. Для того, чтобы вычислить наше местоположение относительно спутников GPS, нам нужно знать их местонахождение в пространстве, другими словами, нам нужно знать их эфемериды. Существует два типа эфемерид: переданные (бортовые) и точные.

Переданные эфемериды

Переданные эфемериды поступают с GPS спутников. Они содержат информацию об элементах кеплеровской орбиты, которые позволяют GPS приемнику вычислять общеземные геоцентрические координаты каждого спутника, относительно исходной геодезической даты WGS-84 (это трехмерная система координат для позиционирования на Земле. В этой системе координаты определяются относительно центра масс Земли. Исходная дата — это дата, когда был определен центр масс). Кеплеровские элементы состоят из информации о координатах спутников на определённую эпоху и изменений параметров орбиты от отчетного периода до момента наблюдения (принимается рассчитанная скорость изменения параметров). Наземные станции постоянно отслеживают заранее предсказанные положения орбит спутников, формируя поток эфемеридной информации. Далее, главная управляющая станция передает переданные эфемериды на спутники. Вычисленная точность переданных эфемерид составляет порядка 2.5 м и около 7 нс.

Точные эфемериды

Точные эфемериды состоят из общеземных геоцентрических координат каждого спутника, определенных в Общеземной наземной системе отчета и включают поправки часов. Эфемериды вычисляются для каждого спутника с определенным интервалом. Точные эфемериды – это продукт постобработки. Данные собираются наземными станциями и затем передаются в Международную Службу GPS, где и происходит вычисление точных эфемерид которые уже имеют точность порядка 5 см и 0.1 нс.

Отключение наземных станций GPS может отразиться лишь на точности позиционирования и вряд ли такая точность нужна для наших с вами повседневных задач. Простой обыватель, я думаю, не почувствует на себе потенциальное снижение этой точности при использовании смартфона в качестве навигатора.

Несмотря на то, что сам факт отключения базовых станций не приведет к тому, что устройства использующие систему GPS перестанут определять координаты, а лишь потенциально снизят точность определения местоположения, дальнейшим шагом теоретически может стать решение уже правительства США прекратить передачу сигнала GPS на территории РФ (просто пролетая над Россией американские спутники не будут транслировать сигнал). Конечно, это возможно. Но пока этого не произошло, и вряд ли случится завтра или через неделю. А через полгода лежащий в кармане смартфон станет уже не модным и нужно будет выбирать новый гаджет Вот тогда-то и нужно будет присмотреться к устройствам в которых есть ГЛОНАСС и я думаю, в ближайшее время их выбор только увеличится.

Точность, которую дает на сегодняшний день ГЛОНАСС несколько ниже чем у GPS, но этот разрыв сокращается с каждым новым запущенным российским спутником в рамках отечественной программы. К тому же несколько больше времени уходит на, так называемый, «холодный старт» — сигнал с первого найденного спутника в устройствах ГЛОНАСС ищется несколько дольше с точки зрения пользователя, и, на самом деле, не так уж это и страшно.

kuzma_prutkoff

Если американцы не разрешат строить на своей территории станции ГлоНаСС, то с 1 июня Россия на своей территории приостановит работу американских станций GPS.
Как это скажется на работу навигационных систем? Попробуем это выяснить.

Основными источниками ошибок, влияющими на точность навигационных вычислений, являются следующие:

1) Погрешности, обусловленные режимом селективного доступа (Selective availability, S/A). Реализуя этот режим, провайдер услуг GPS (Министерство обороны США) намеренно снижает точность определения местонахождения для гражданских потребителей. В режиме S/A формируются ошибки искусственного происхождения, вносимые в сигнал на борту GPS-спутников с целью загрубления навигационных измерений. Такими ошибками являются неверные данные об орбите спутника и искажения показаний его часов за счет внесения добавочного псевдослучайного сигнала. Величина среднеквадратической ошибки из-за влияния этого фактора составляет примерно 30 м.
2) Погрешности, связанные с распространением радиоволн в ионосфере. Задержки распространения сигналов при их прохождении через верхние слои атмосферы приводят к ошибкам порядка 20-30 м днем и 3-6 м ночью. Несмотря на то, что навигационное сообщение, передаваемое с борта GPS-спутника , содержит параметры модели ионосферы, компенсация фактической задержки в лучшем случае составляет 50%. Компенсировать ошибки, вызванные ионосферной рефракцией, можно при использовании для навигации сигналов, принимаемых на двух разных частотах.
3) Погрешности, обусловленные распространением радиоволн в тропосфере. Возникают при прохождении радиоволн через нижние слои атмосферы. Значения погрешностей этого вида при использовании сигналов с С/А-кодом не превышают 30 м.
4) Эфемеридная погрешность. Ошибки обусловлены расхождением между фактическим положением GPS-спутника и его расчетным положением, которое устанавливается по данным навигационного сигнала, передаваемого с борта КА. Значение погрешности обычно не больше 3 м.
5) Погрешность ухода шкалы времени спутника обусловлена расхождением шкал времени различных спутников. Устраняется с помощью наземных станций слежения или за счет компенсации ухода шкалы времени в дифференциальном режиме определения местоположения.
6) Погрешность определения расстояния до спутника. Данный показатель является статистическим, он вычисляется для конкретного спутника и заданного интервала времени. Ошибка не коррелирована с другими видами погрешностей. Ее величина обычно не превышает 10 м.
Один из основных методов повышения точности определения местонахождения объекта и устранения ошибок, связанных с введением режима селективного доступа, основан на применении известного в радионавигации принципа дифференциальных навигационных измерений.
Дифференциальный режим DGPS (Differential GPS ) позволяет установить координаты с точностью до 5 м в динамической навигационной обстановке и до 2 м — в стационарных условиях. Дифференциальный режим реализуется с помощью контрольного GPS-приемника, называемого опорной станцией. Она располагается в пункте с известными координатами, в том же районе, что и основной GPS-приемник, и дает возможность одновременно отслеживать все видимые GPS-спутники.
Опорная станция включает в себя измерительный датчик GPS с антенной, процессор, приемник и передатчик данных с антенной. Станция, как правило, использует многоканальный приемник GPS, каждый канал которого отслеживает один видимый спутник. Необходимость непрерывного отслеживания каждого космического аппарата (КА) обусловлена тем, что опорная станция должна «захватывать» навигационные сообщения раньше, чем приемники потребителей. Сравнивая известные координаты (полученные в результате прецизионной геодезической съемки) с измеренными, контрольный GPS-приемник вырабатывает поправки, которые передаются потребителям по радиоканалу в заранее оговоренном формате.
Аппаратура потребителя включает в себя GPS-приемник с антенной, оснащенный процессором и дополнительным радиоприемником с антенной, который и позволяет получать дифференциальные поправки с опорной станции. Поправки, принятые от опорной станции, автоматически вносятся в результаты собственных измерений пользовательских устройств.

Результаты, полученные с помощью дифференциального метода, в значительной степени зависят от расстояния между объектом и опорной станцией. Применение этого метода наиболее эффективно, когда преобладающими являются систематические ошибки, обусловленные внешними (по отношению к приемнику) причинами, что обычно характерно для системы GPS.
Погрешности S/А и «уходы» шкалы времени компенсируются в дифференциальном режиме полностью. Погрешности вследствие задержки сигналов в атмосфере зависят от идентичности условий прохождения сигналов к опорной станции и объекту, а следовательно, от расстояния между ними. Эти погрешности компенсируются полностью лишь при близком расположении опорной станции и объекта. Эфемеридная погрешность также лучше всего компенсируется при небольшом удалении потребителя от опорной станции. По данным причинам опорную станцию рекомендуется располагать не далее 500 км от объекта.
Метки: техника

GPS: основые понятия и термины

В 1973 году данные программы объединили в одну, и военно-воздушные силы США назначили руководящими в разработке системы. Это стало началом истории построения системы NAVSTAR (Navigation Satellite Timing and Ranging) — глобальной системы местоопределения (Global Positioning System). С 1983 года, после того, как к ее информации получили доступ гражданские лица, а в 1991 году были сняты ограничения на продажу GPS-оборудования в страны бывшего СССР, распространение получила широко известная аббревиатура GPS.

Изначально планировалось, что система будет служить для высокоточного наведения боевых ракет, а навигационные функции системы были отодвинуты на второй план.

Первый спутник системы был запущен в 1978 году, а основная часть спутников системы были запущены на орбиты в середине 80-х годов. В 1994-м на орбиту был помещен спутник, позволивший завершить построение системы из 24 спутников.

Период нахождения спутника на орбите примерно равен 10 годам. Отработавшие свой срок спутники планомерно выводят из системы и утилизируют.

В России действует аналогичная система спутниковой навигации ГЛОНАСС (ГЛОбальная НАвигационная Спутниковая Система), принцип работы которой во многом подобен GPS, точность определения координат которой, однако, заметно меньше.

Спутниковые радионавигационные системы — это всепогодные системы космического базирования. Они позволяют определять текущие местоположения подвижных объектов и их скорость, а также осуществлять точную координацию времени.

В состав системы входят:

  • созвездие ИСЗ (космический сегмент);
  • сеть наземных станций слежения и управления (сегмент управления);
  • GPS-приемники (аппаратура потребителей).

Космический сегмент (орбитальная группировка) системы GPS на данный момент содержит 24 спутника. У каждого спутника имеется порядковый номер (PRN), всего номеров зарезервировано 32. По состоянию на 27 декабря 2005 года, на орбите находилось 29 рабочих спутников, 5 из которых либо уже отработали свой срок, либо готовились к вводу в систему для замены отработавших. Период обращения одного спутника составляет 11 часов 56,9 минут. Вес каждого спутника около 835 кг, линейный размер более 5 м (с развернутыми солнечными батареями). На борту каждого спутника установлены атомные часы, обеспечивающие точность 109 (0,000000001) с, вычислительно-кодирующее устройство и передатчик мощностью 50 Вт. Спутники размещены на 6 орбитальных плоскостях. Высота орбит примерно равна 20 200 км, угол наклона орбит составляет 55 градусов (рис. 1).

Передающая аппаратура излучает синусоидальные сигналы на двух частотах: L1 = 1575,42 МГц и L2 = 1227,60 МГц. Перед этим сигналы модулируются псевдослучайными цифровыми последовательностями (эта процедура называется фазовой манипуляцией). Причем частота L1 модулируется двумя видами кодов: C/A-кодом (код свободного доступа) и P-кодом (код санкционированного доступа), а частота L2 — только P-кодом. Кроме того, обе несущие частоты дополнительно кодируются навигационным сообщением, в котором содержатся данные об орбитах ИСЗ, информация о параметрах атмосферы, поправки системного времени. Частота L1 предназначена для широкого круга гражданских потребителей, а доступ к сигналам частоты L2 в основном получают военные и федеральные службы США. Точность автономного определения расстояния по P-коду примерно на порядок выше, чем по C/A-коду.

Данные параметры расположения группировки космических аппаратов выбраны не случайно. В любой момент времени в любой точке земного шара можно получить сигналы как минимум от 3-х спутников, что является необходимым условием определения координат. Для более точного определения местоположения необходим сигнал от четвертого спутника.

Наземный сегмент системы представляют контролирующе-измерительные станции для мониторинга спутников. Они расположены на Кваджалейне, на острове Вознесения, на Гавайях, Диего-Гарсия и Колорадо-Спрингс. Также в системе работают три наземные антенны (остров Вознесения, Диего-Гарсия и Кваджалейн). Управление осуществляется на центральной станции, расположенной на авиабазе в Шривере, Колорадо (Schriever Air Force Base, Colorado).

Приемные устройства — GPS-навигаторы — работают в комплексе со спутниками. GPS-навигатор получает со спутников следующую информацию: «псевдослучайный код» (PRN — pseudo-random code), «эфемериды» (ephimeris) и «альманах» (almanach). По наличию этих данных в GPS-навигаторах определяют вид старта или, по-другому, инициализации (под стартом подразумевается начало процесса получения данных хотя бы с 3 спутников, что достаточно для 2D-навигации). Каждый спутник передает только собственную эфемериду, в то время как альманах передается каждым спутником обо всех спутниках сразу. Стартовать приемник может в разных режимах. «Холодный старт» происходит в том случае, когда информация об альманахе и эфемеридах сильно устарела. Данные могут утеряться в случае переноса GPS-приемника на большое расстояние, или же если часы приемника сбились. Как правило, «холодный старт» занимает от нескольких до 45 минут. «Теплый старт» — альманах сохранился, но эфемериды уже потеряны и часы приемника еще «знают» точное время. Такой старт занимает меньше времени, от 30 секунд до 10–15 минут, в зависимости от условий приема. В этом случае GPS-приемнику необходимо получить данные только эфемерид. И, наконец, самый быстрый старт — «горячий». Занимает от нескольких секунд до 5 минут. «Горячий старт» может быть осуществлен, когда в навигаторе имеется и альманах, и эфемериды.

Таким образом, большей частью время между включением и началом выдачи координат зависит от того, как давно было выключено устройство, а также от чувствительности прибора; модель приемника влияет на скорость захвата спутников в меньшей степени.

Функционирование аппаратуры потребителя можно понять из обобщенной схемы (рис. 2).

Основное сообщение, передаваемое с каждого навигационного спутника GPS, формируется в виде кадра. Поток навигационных данных передается со скоростью 50 бит/с. Длительность информационного символа «0» или «1» равна 20 мс. Кадр состоит из пяти под-кадров, причем четвертый и пятый подкадры разделены на 25 страниц каждый. Подкадры с первого по третий, а также каждая страница четвертого и пятого подкадров содержат по 300 символов, которые разделены на 10 слов по 30 символов в слове.

В таблице 1 показана информация, передаваемая с навигационного спутника.

Таблица 1. Информация, передаваемая со спутника.

Альманах, содержащий информацию о параметрах орбит каждого из спутников системы, приведен в таблице 2.

Таблица 2. Данные альманаха спутника 01.

Нулевой отсчет времени GPS определен в полночь с 5 на 6 января 1980 года. Неделя является самой большой единицей измерения времени в системе GPS. Неделя определена как 604 800 с.

Эфемериды представляют собой уточненные параметры движения спутников. Основываясь на данных альманаха, GPS-приемник «сканирует» небо и при получении данных от спутника уточняет его эфемериды.

Рис. 3. Расположение спутников на информационном экране навигатора

Чтобы понять, как GPS-навигатор определяет координаты, необходимо иметь представление о системе координат, в которой происходит движение спутников и определение координат конечных потребителей.

Наблюдатель на Земле может представить небесную сферу, спроецированную на плоскость так, чтобы центр совпадал с местоположением наблюдателя.

Именно в этой проекции пользователю GPS-навигатором показывается примерное расположение спутников (рис. 3).

Как видно из рисунка (снимок с экрана GPS-навигатора), спутников в пределах видимости находится девять (снимок производился при включенном режиме симуляции, то есть когда навигатор не ловит сигналы со спутников, а моделирует возможные ситуации). В реальности спутников на проекции сферы видно не более восьми, а сигналы принимаются максимум с четырех-шести. Закрашенный столбик над номером спутника показывает на устойчивый прием сигналов, а высота столбца позволяет оценить качество приема. В момент, когда GPS-навигатор начинает получать информацию со спутника, над его номером появляется незакрашенный прямоугольник. Закрашивается он при уточнении параметров орбиты спутника и начале получения данных, на основе которых идет непосредственный расчет координат пользователя.

Данные спутниковых систем и параметры орбит спутников рассчитываются относительно центра масс Земли. В бытовых GPS-навигаторах используется единая система координат, наиболее популярная в системах гражданской авиации, WGS-84.

Глобальная система координат WGS–84 определена следующим образом.

Начало координат 0 расположено в центре массы Земли;

  • ось 0Х — пересечение плоскости исходного меридиана WGS–84 и плоскости экватора;
  • ось 0Z — направлена на Северный полюс Земли;
  • ось 0У — дополняет систему до правой системы координат.

Исходный меридиан WGS–84 совпадает с нулевым меридианом, определенным Международным бюро времени (BIN).

При наличии сигнала от одного спутника (№1), известной скорости распространения электромагнитного сигнала в пространстве (300 000 км/с) и времени, за которое сигнал дошел от спутника до GPS-приемника, стало возможным рассчитать геометрическое место точек нахождения приемника сигнала (им будет являться сфера с радиусом, равным расстоянию от спутника до приемника, в центре которой находится спутник).

Если GPS-навигатор начал принимать сигналы от второго спутника, то аналогично первому случаю, строится сфера вокруг спутника №2. Так как GPS-приемник должен находиться на обеих сферах сразу, то теперь строим пересечение двух сфер. Каждая точка получившейся окружности может являться местом нахождения приемника в пространстве.

Наконец, когда приемник поймает сигнал от спутника №3, строится еще одна сфера, при пересечении с окружностью она дает нам две точки. Одна из этих точек, как правило, имеет довольно неправдоподобное расположение, и в процессе вычисления по алгоритму она отбрасывается. Таким образом, мы получаем результат: широту и долготу.

Но если учитывать огромную скорость распространения электромагнитной волны, ошибка в расчетах на тысячные доли секунды может привести к довольно серьезным погрешностям в вычислении расстояния до спутника, а затем и в построении сфер и определении координат. Таким образом, мы подобрались к одному важному нюансу — для корректного определения координат необходим четвертый спутник.

После построения трех сфер приемник начинает манипулировать с временной задержкой. При каждом новом сдвиге времени приемника строятся новые сферы, точка пересечения их «расплывается» в треугольник. То есть сферы перестают пересекаться, а местоположение GPS-приемника может с определенной вероятностью быть в любой из точек треугольной области. Затем временные сдвиги продолжаются до тех пор, пока все три сферы снова не пересекутся в одной точке. Получаем довольно точные координаты. И чем больше спутников «видит» навигатор, тем точнее мы можем скорректировать время с вытекающим из этого увеличением точности позиционирования. При наличии четвертого спутника начинает работать так называемая 3D-навигация, и мы имеем возможность определить высоту над уровнем моря, скорость передвижения по поверхности и скорость вертикального перемещения.

Немного о точности. При создании системы в нее специально внесли так называемый режим S/A (Selective Availability — ограниченный доступ). Этот режим разработан для того, чтобы не дать возможному противнику тактического преимущества в определении местоположения с помощью GPS. Принцип действия данного режима заключается в искусственном рассогласовании часов спутника и приемника. Поэтому даже при хорошем приеме сигналов нескольких спутников точность не превышала 100 метров. Однако в 2000 году данный режим был отменен, и официально система GPS стала давать возможность определять координаты более точно. Как правило, указывают точность в 20…30 метров. Если использовать специальные алгоритмы пост-обработки, точность можно повысить вплоть до нескольких миллиметров, но это умеют делать геодезические системы. Для работы с такими системами нужен сертификат и разрешение, а их стоимость превышает стоимость бытовых навигаторов в десятки раз.

На точность определения координат существенное влияние оказывают ошибки, возникающие при выполнении процедуры измерений. Природа этих ошибок различна.

  1. Неточное определение времени. Вносит погрешность порядка 1 метра.
  2. Погрешности вычисления орбит спутников (уточнения эфемерид). Вносят погрешность порядка 1 метра.
  3. Ионосферные задержки сигнала. Вносят погрешность до 10 метров.
  4. Многолучевое отражение от высоких зданий, других объектов. Вносит погрешность до 2 метров.
  5. Геометрическое расположение спутников.
  6. Тропосферные задержки сигнала.

Литература