Термоядерный космический двигатель

Русский ядерный двигатель для космического корабля: Миф или ближайшее будущее?

Российская ракета с ядерной двигательной установкой может отправиться в космос на испытательный полёт уже в этом году. Об этом Царьград информировал доверенный источник, знакомый с ситуацией в русской космической отрасли.

Технически там всё практически ясно, — рассказал специалист, знакомый с научной стороной проблемы. — Схема двигателя понятна, ионный прототип с хорошим удельным импульсом разработан, изготовлен и испытан на стендах. Есть представление о ракете в целом, кое-что тоже испытывается. Если поднапрячься, изделие может быть отправлено для испытаний в реальном космосе достаточно быстро, не исключаю, что и в нынешнем году, хотя говорят в целом о двадцатых годах.

Но это всё — именно «может быть», со вздохом дополнил учёный. Ибо сегодня в космической отрасли и с исполнительной дисциплиной, мягко говоря, есть сложности, и в целом отмечаются метания, интенсивность которых, также мягко говоря, набрала слишком размашистую амплитуду…

Совещание о ракетоплане

Вовсе не случайно, отметил источник, что недавно была организована утечка информации о совещании в «Роскосмосе», где прозвучал призыв готовиться к переходу космонавтики на ракетопланы с ядерной двигательной установкой.

Согласно сообщению, вышедшему в РИА Новости, совещание по перспективам создания многоразовой ракетно-космической техники, состоявшееся в госкорпорации, завершилось составлением предложения для предприятий, в котором значилось «рассмотрение принципиально новых компоновок» для многоразовых космических систем. Среди этих компоновок упоминались также и «ракетопланы с ядерной двигательной установкой».

Ракетопланы, разъяснил информатор Царьграда, — если это, правда, не всего лишь словцо, полюбившееся «эффективным менеджерам», как не без яда добавил он, — это практически космические самолёты, умеющие летать в атмосфере и поднимающиеся в космос на крыльях. Неслучайно в контексте новости о совещании в «Роскосмосе» упоминались многоразовый корабль «Буран», орбитальный самолёт «Бор», многоразовые крылатые ускорители «Байкал» для ракеты «Ангара».

«Буран». Фото: www.globallookpress.com

Иное дело, что подобные аппараты не обязательно должны летать на ядерных двигательных установках, как не летал, например, тот же «Буран». Но факт и то, заявил учёный, что нынешние химические ракетные виды топлива практически близки к исчерпанию энергетического потенциала и на них невозможна межпланетная космонавтика. То есть ждать по году, а то и по десятилетию, покамест автоматические зонды доберутся до Марса, Юпитера или объекта Ультима Туле в поясе Койпера, — это можно. Сидя в своей лаборатории или дома под надёжным укрытием атмосферы и земных магнитных полей от опасных космических излучений. Но вот отправляться в полуторагодичный полёт на Марс без возможности сманеврировать и в случае чего вернуться — это слишком большой риск при слишком небольших шансах на успех.

Мы ещё автоматические зонды с Марса не научились возвращать, — подытожил консультант Царьграда в космической сфере. — Где уж думать о том, как вернуть корабль с людьми, летящий, по сути, как камушек, практически неуправляемый в полёте.

Фото: www.globallookpress.com

Корабль с ядерным двигателем

В чём принципиальная разница между нынешними ракетами с химическими двигателями и транспортно-энергетическими модулями на основе ядерной энергодвигательной установки?

Первые похожи на набор цистерн с топливом, которые поднимают корабль на орбиту, это топливо вырабатывая, а «цистерны» отбрасывая. Эта схема действует уже 70 лет и стала за это время достаточно отработанной и надёжной. Но! Чем сложнее техника, чем больше в ней деталей — тем быстрее случается её отказ. Как ни совершенствуй и ни контролируй её. Даже без злого умысла — чистая статистика, закон больших чисел. Что погубило, скажем, советскую лунную программу в 1960-х годах? Да в значительной степени то, что синхронизировать работу 30 двигателей первой ступени, 8 — второй и 4 — третьей было задачей непосильной для тогдашней техники.

Но и в случае удачного сложения всех обстоятельств выведенное на орбиту изделие оказывается с очень ограниченным запасом топлива, не позволяющим совершать полноценные манёвры в космосе. То-то вон и МКС приходится поднимать, чтобы не соскользнула с нужной орбиты, с помощью дополнительного топлива и транспортных кораблей. А теперь представим, что будет делать подобная МКС возле Марса. И как её уводить оттуда?

А вот ядерная энергодвигательная установка от таких проблем практически свободна. Главное только — не перепутать: одно дело — двигатель для неё, другое — энергетика для двигателя. Энергетику обеспечивает ядерный реактор, который даёт электрический ток. Считается, что мощность тока должна быть не менее чем на мегаваттном уровне.

Фото: Billion Photos / .com

А вот двигатель — система отдельная, которая на этом токе и работает. В той системе, над которой российские специалисты работают как минимум с 2009 года, двигатель используется ионный. Точнее, не совсем, но принцип, в общем, один — плазменный. Между двумя электродами — анодом и катодом — размещена рабочая камера, в которую подаётся рабочее тело — например, газ ксенон. Между анодом и катодом устраивается большая разность потенциалов, и разряды тока ионизируют рабочее тело. Ионы эти разгоняются в нужном направлении, толкая космический корабль в противоположную сторону.

Но нужен также холодильник, чтобы охлаждать реактор. Тоже не без подвоха система, хотя, казалось бы, какой нужен холодильник, раз вокруг — вакуум и абсолютный нуль? Но вот как раз именно из-за того, что пустота теплоотводными качествами не обладает, пришлось конструкторам изобретать нечто вроде постоянной водной смеси вокруг реактора.

Мы — первые!

Дальнейшие технические подробности не очень интересны. Можно сказать лишь, что российским учёным и конструкторам удалось сделать огромную по сложности работу. Как по замыслу, так и по исполнению. Американцам, которые тоже корпели над этой темой, не удалось за долгие годы даже приблизиться к созданию реактора, стабильно работающего в космосе. После чего джентльмены поступили так, как им и положено: добились решения ООН по запрету использования ядерных энергодвигательных установок в космосе. Дело было при… нетрудно догадаться: Горбачёве.

Так что ждём предметных возмущений от американцев, когда дойдёт дело до испытаний ЯЭДУ в космосе…

В чём основные преимущества и недостатки ядерных двигательных установок? Удобство — в обращении с рабочим телом и в его хранении. Это всего лишь нейтральный неопасный газ в жидком или твёрдом виде. Очень долгий срок службы: время непрерывной работы такого двигателя — проверено — составляет более 3 лет.

Высокая тяга: плазменный двигатель в 20 раз превосходит по этому показателю двигатель химический. Высокий удельный импульс: у ионного двигателя ИД-500, сделанного в Центре имени М.В. Келдыша, удельный импульс составляет 70 000 м/с. Но вообще ионы могут разгоняться под действием тока до скоростей большее 200 км/с (у химических двигателей — 3-4,5 км/с). Благодаря всему этому до Марса можно долететь за полтора месяца при полностью управляемом режиме.

И всё это — на расстоянии вытянутой руки! Россия может стать первой страной, не просто отправившей человека к Марсу, но первой в переходе на качественно новый способ передвижения в космосе!

Может. Но станет ли?

«Ничего комментировать не могу…»

В разговоре с Царьградом очень информированный эксперт в области космических исследований академик Михаил Маров, когда-то сам принимавший участие в разработке межпланетных космических аппаратов, продемонстрировал скепсис относительно перспектив скорого испытания русского космического корабля с ядерной двигательной установкой.

Академик РАН, заведующий отделом планетных исследований и космохимии Института геохимии и аналитической химии им. В.И. Вернадского РАН Михаил Маров. Фото: Георгий Поляков/Интерпресс/ТАСС

Дело в том, что я бы мог вам комментировать более или менее ответственно, если бы дело шло о советской эпохе, — заявил он. — Вот тогда было всё, в общем, довольно чётко, хотя и много было секретности. Но то, что было решено, довольно чётко выполнялось. Сейчас же я ничего комментировать не могу. Потому что все планы сегодня уползают вправо, причём никто за это ответственности не несёт. Хотя эти проекты, скажем, «Луна-Глоб», «Луна-Ресурс» — всё это в федеральной космической программе. А тогда, если проект был в аналоге федеральной программы, то есть назван в постановлении ЦК и Совмина, то если генеральный или главный конструктор говорил, что он изделие вовремя не может сделать, ему говорили очень коротко и спокойно: ну, тогда положишь на стол партбилет. И это, как вы понимаете, было настолько значимо с точки зрения крушения карьеры, что люди делали всё, что могли и не могли, чтобы выдержать плановые сроки.

Вот жил в своё время конструктор Георгий Бабакин, напомнил академик Маров. Это человек, который за шесть лет сделал 16 космических аппаратов!

«При мне он обещал Келдышу сделать за два года возврат грунта с Луны, — рассказал учёный. — И это вошло потом в постановление ЦК и Совмина. И это было сделано. А вот сейчас, когда вы меня спрашиваете, я был бы очень-очень рад сказать: да, всё великолепно. Всё, что и как заявлено, будет сделано. Но я не могу так сказать».

Так что хорошо то, что делается. Но нашему космосу сегодня больше всего нужна простая метла. Которая подчистила бы все те горы мусора, полуправд и пустозвонства, которые скопились в отрасли за последние десятилетия.

Состоялись первые успешные испытания космического корабля с термоядерным двигателем

Исследователи из Университета Вашингтона и учёные из расположенной в Редмонде аэрокосмической компании в настоящее время строят компоненты для ракеты с термоядерным двигателем, которая позволит астронавтам с Земли достигать Марса в течение считанных недель, на скоростях, намного превышающих доступные нам на сегодняшний день.

Текущие скорости полёта топливных ракет растягивают полёт на Марс на четыре года, но новая термоядерная технология, которая сейчас тестируется учёными из Вашингтонского Университета, обещает делать это за срок от 30 до 90 дней.
Лабораторные испытания отдельных компонентов прошли удачно, и теперь исследователи планируют скомбинировать все части в одно целое и провести окончательный общий тест.
«При помощи существующих топливных ракет для нас практически невозможно исследовать что-то более-менее отдалённое от Земли», говорит ведущий исследователь проекта, профессор аэронавтики и астронавтики Джон Слоу. «Мы надеемся дать в наше распоряжение гораздо более мощный источник энергии, который сможет сделать межпланетные перелёты обычным явлением».
Команда проекта разработала эту технологию с применением особого типа плазмы, заключённой в магнитную ловушку. Когда плазма под большим давлением сжимается магнитным полем, в ней начинается ядерная реакция.
Этот процесс успешно прошёл лабораторные испытания, и теперь учёные планируют провести первые полномасштабные испытания системы в конце лета.

Испытательная камера ракеты с термоядерным двигателем в Лаборатории плазменной динамики в Университете Вашингтона, Редмонд. Зелёная вакуумная камера окружена двумя сверхмощными магнитами. Магниты питаются от конденсаторов через множество присоединённых кабелей.
Мощные магнитные поля заставляют большие металлические кольца, окружающие плазменный шнур, взрываться, а затем сжиматься до точки, в которой начинается термоядерная реакция. Процесс занимает всего несколько микросекунд, но этого достаточно, чтобы высвободить тепло и ионизировать кольца, которые формируют оболочку вокруг плазмы. Супер-перегретый ионизированный металл в свою очередь выбрасывается из сопла ракеты с огромной скоростью, заставляя ракету двигаться вперёд. Повторение процесса с интервалами примерно в 30 секунд достаточно для перемещения космического корабля.
Исследование финансировалось NASA в надежде, что эта технология, наконец, сумеет заменить нам ракетное топливо, и позволит строить более быстрые космические аппараты, чем когда-либо прежде. Учёные говорят, что даже количество плазменного материала размером с зерно, эквивалентно пяти литрам ракетного топлива. Это в свою очередь позволяет уменьшить размеры корабля и его загрузку, делая путешествия в глубоком космосе намного более экономически эффективными.

Термоядерный ракетный двигатель

Проект космического корабля с ЛТЯРД «Дедалус»

Термоя́дерный раке́тный дви́гатель (ТЯРД) — ракетный двигатель, в котором основным источником энергии являются термоядерные реакции. В настоящее время практически работающий двигатель ещё не создан, и работы над ним представляют теоретические изыскания и эксперименты на мощных исследовательских лазерных установках. Практическое значение этого двигателя крайне велико, так как в настоящее время именно в этом двигателе могут быть достигнуты предельные параметры удельного импульса и тяги на единицу веса.

История работ по ЛТС

История термоядерного ракетного двигателя берёт своё начало с середины XX столетия, с того времени когда человечество овладело управляемой ядерной реакцией деления и получило возможность выделять термоядерную энергию в ходе мощных взрывов с использованием атомной бомбы в качестве источника тепла. Кроме того в тот период времени были открыты способы генерации лазерного излучения и было установленно что при фокусировке лазерного луча в его фокусе температуры достигают уровня необходимого для инициирования термоядерных реакций (миллионы К). В ходе исследований было установленно что для наиболее приемлемого к использованию в ЛТЯРД способа контролируемого проведения термоядерных реакций, пригоден лазерный термоядерный синтез (ЛТС). В США и СССР со второй половины 50-х годов и по сегодняшний день в связи с перспективностью ЛТС идёт создание всё более мощных лазерных комплексов, и изучение термоядерных реакций в фокусе лазерного сжатия и нагрева специальных топливных мишеней содержащих смесь дейтерия с тритием. Помимо лазерного сжатия, также проводились и проводятся эксперименты по сжатию и нагреву термоядерных мишеней с помощью сфокусированных электронных и ионных пучков. Последние более выгодны для нагрева вещества до термоядерных температур ввиду более высокого КПД преобразования энергии, но имеют крупный недостаток — большую расходимость и рассеяние энергии в плазме. Именно лазерный нагрев считается поэтому наиболее приемлимым для создания практически работающих реакторов и двигателей на основе инерциального синтеза.

Работы в СССР:

В 1968 году в СССР (ФИАН) была создана первая мощная лазерная установка для экспериментов по сжатию дейтерида лития (П. Г. Крюков, С. Д. Захаров, Ю. В. Сенатский), а в 1971 году в ФИАНе была создана ещё более мощная установка для сферического лазерного облучения топливных мишеней «Кальмар». В 1980 году в ФИАНе была запущена самая мощная в мире установка для сферического лазерно сжатия «Дельфин» на которой была показана принципиальная практическая осуществимость ЛТС с положительным выходом. Помимо этих установок также были созданы установки для экспериментов по УЛТС: «Сокол», «Прогресс», «Мишень», «Искра», «ТИР-1», «Перун» (совместно с Чехословакией). В дальнейшем была создана крупнейшая лазерная установка в мире «Искра-5», и в настоящее время создаётся мощнейшая в мире установка «Искра-6», мощность которой достаточно велика для создания практического лазерного термоядерного реактора или двигателя для космических полётов. В этом направлении достигнуты весьма значительные успехи, и на сегодняшний день ЛТЯРД может быть создан, хотя стоимость его будет очень высока (свыше 1 млрд.долл) по оценке американских специалистов.

Работы в США:

В Соединённых Штатах Америки работы по ЛТС и возможности создания ТЯРД начались практически сразу после положительных результатов экспериментов полученных на лазерных установках в Советском Союзе. В середине 60-х г.г фирма «Аэроджет-дженерал нуклеоникс» по контракту с ВВС США начала исследования под руководством доктора Джона Льюиса по осуществлению управляемой термоядерной реакции. Конечной целью этих исследований было обеспечение условий протекания самоподдерживающейся термоядерной реакции для получения энергии и ее использования в ракетных двигателях. Термоядерная реакция в этих случаях должна происходить в стационарных условиях, включая протекание ядерной реакции в «камере сгорания» термоядерного ракетного двигателя. Такой переход от внешнего цикла действия, как в случае импульсного ЯРД, к внутреннему циклу без упомянутых выше ограничений достижимого удельного импульса оказался возможен благодаря повышению температуры реакции приблизительно до 100 млн К. При такой температуре газ превращается в полностью ионизированную электропроводную плазму, которая может быть удержана магнитным полем в заданном пространстве. При значительном финансировании и поддержке правительства были созданы мощные установки: в 70-е годы «Янус», «Аргус», в дальнейшем «Шива», «Гелиос», при Рочестерском университете установка «OMEGA», и в апреле 1985 года в Ливерморской национальной лаборатории им. Лоуренса установка «NOVA». Также были созданы установки «Антарес», «Аврора» при Лос-Аламосской лаборатории которые вплотную приблизились к порогу положительного выхода энергии термоядерных реакций. В настоящее время в США строится новая мощная установка «NIF».

Работы в других странах:

Эксперименты и создания установок ЛТС проводились и проводятся в Германии «Астерикс», Японии по программе «KONGO» установки «LЕККО-VIII» и «GЕККО ХП», Франции «PHEBUS» и ряде других стран, но ощутимого успеха и оправданных практических результатов на сегодняшний день они не получили.

Основные теоретические характеристики двигателя

Использование тепловой энергии термоядерных реакций позволяет реализовать предельные возможности внутриядерной энергии в достижении максимальных характеристик ракетного двигателя по удельному импульсу и тяге. Так например при подсчёте энергии выделяющейся при образовании 1 кг гелия в ходе термоядерных реакций оказывается что она эквивалентна 60 300 тонн обычного ракетного топлива смеси керосина с кислородом, и в 7,1 раза больше чем деление 1 кг урана-235 (экв 8500 т керосино-кислородной смеси, экв 6161 тонн кислородно-водородной смеси). Скорости разлёта термоядерной плазмы достигают значения 25 000 — 30 000 км/сек, и соответственно достижимый в термоядерном двигателе удельный импульс примерно равен 2 500 000 — 3 000 000 сек.

Устройство и принцип работы ЛТЯРД

Условия практического осуществления:

Практическое осуществление такого ЛТЯРД возможно при удовлетворении трех основных требований:

  1. Получение плазмы в процессе устойчивой самоподдерживающейся ядерной реакции, при которой лишь незначительная доля энергии всей системы выделяется в виде нейтронов.
  2. Создание сверхсильного магнитного поля соответствующей конфигурации, позволяющей обеспечить условия устойчивой самоподдерживающейся реакции, и удержания плазмы в заданном ограниченном объёме камеры сгорания двигателя.
  3. Конструктивная разработка устройства с минимальными весовыми характеристиками, обеспечивающего получение и стабилизацию сверхмощного магнитного поля для удержания высокотемпературной плазмы; требование «минимальных весовых характеристик» подразумевает также и требование низких расходных мощностей на поддержание и инициирование термоядерных реакций.

Принципиальная схема Лазерного термоядерного ракетного двигателя: (1- подвод энергии к лазеру, 2- ввод облучённого лития-6 с наработанным тритием, 3- подвод энергии к холодильной станции, 4- подвод энергии, трития, дейтерия, и вспомогательных веществ к фабрике мишеней, 5- криогенная холодильная станция, 6- лазер, 7- сепаратор-отделитель трития от облучённого лития-6, 8- фабрика мишеней, 9-электромагнитная пушка для введения мишеней, 10- корпусные сверхпроводящие электромагниты, 11- волноводы лазерного излучения,12- сопловая фокусирующая электромагнитная система,13- криогенная система охлаждения электромагнитов,14- продукты реакций (поток заряженных частиц и излучения),15- отражатель нейтронов,16- вторичный охлаждающий контур,17- охлаждающе-регенерационный контур с литием-6,18- сфокусированный лазерный луч, 19- лазерное окно, 20- термоядерный микровзрыв, 21- сверхпроводящие обмотки электромагнитной системы, 22- летящие в эпицентр мишени) Конфигурация магнитных полей в ЛТЯРД

Принцип работы двигателя:

Принцип работы ЛТЯРД достаточно прост. В центр рабочей полости двигателя, посредством электромагнитной пушки подаются сферические лазерные термоядерные мишени наполненные смесью дейтерия с тритием, и оказавшись в эпицентре полости они облучаются со всех сторон мощным импульсным лазерным излучением. При мощном сжатии мишень разогревается свыше 100—1000 млн К и в ней происходит быстрая термоядерная реакция (термоядерный микровзрыв). Продукты реакций — гелий, остатки оболочки мишени, и непрореагировавший дейтерий и тритий, рентгеновское излучение, разлетаются во все стороны, но так как в камере двигателя создано сверхсильное магнитное поле сферической конфигурации, а в сопле продольное магнитное поле, то образующийся поток сверхгорячих газов не соприкасаясь со стенками полости вытекает в наружное пространство (в космос). Таким образом в конструкции двигателя обеспечивается управление потоком газов и выбрасывание их в определённом направлении (через сопло). Для возможности регулирования тяги в конструкции двигателя предусматривается форсажная камера (на рисунке не показана) в которую вводится дополнительное количество рабочего тела (водород).

Устройство двигателя:

Лазерный термоядерный двигатель является очень сложным сооружением, выполняемым с наиболее высокой степенью точности сборки, и применением нескольких взаимозависимых систем для обеспечения работы этого двигателя. В целом он состоит из следующих основных систем:

  • Система равномерного лазерного облучения сферических топливных мишеней с регулировкой частоты.
  • Система подачи мишеней синхронно с лазерными импульсами и регулируемой частотой
  • Сверхпроводящая система магнитного удержания и направления продуктов термоядерных реакций.
  • Система регенерации трития (облучение лития-6, сепарация и концентрирование трития).
  • Фабрика мишеней (быстрое производство сферических мишеней с термоядерной смесью).
  • Криогенная система охлаждения.
  • Система охлаждения корпуса и стенок двигателя и выработки электроэнергии.

Помимо основных систем обеспечивающих равномерную работу двигателя, также имеются такие системы как:

  • Система аккумулирования электроэнергии.
  • Система контроля (общий контроль всех взаимоувязанных систем двигателя).
  • Система хранения и подачи компонентов топлива (баки, насосы, клапана, датчики, трубопроводы и проч).
  • Система радиационной защиты от рентгеновского, нейтронного и гамма-излучения работающего двигателя, или наведённой радиации.

Топливо. Термоядерные реакции. Мишени

Термоядерная мишень (1- оболочка, 2- сжатое горючее, 3- волна термоядерного горения)

Простая термоядерная мишень используемая в ЛТЯРД представляет собой правильную полую сферу изготовляемую с высочайшей степенью точности, и состоящую из двух частей: тонкую полую сферу (баллон, оболочку) из боросиликатного стекла и топливную смесь заполняющую оболочку. Мишень может иметь и более сложную структуру (многослойную) в зависимости от планируемой скорости термоядерных реакций и их направления. В простейшем случае полая оболочка заполняется смесью дейтерия с тритием в жидком виде, или газообразном с дальнейшим намораживанием смеси на стенку оболочки. Принципиально применение мишени достаточно простое: мишень выстреливается с большой скоростью в центр камеры двигателя, где обжимается со всех сторон действием импульса лазерных лучей. При импульсном сжатии достигаются необходимые условия для нормального протекания термоядерной реакции (критерий Лоусона). Размеры мишеней могут варьироваться в зависимости от планируемого режима работы двигателя (реактора), и его расчётной мощности.

Некоторые наиболее предпочтительные реакции синтеза для обеспечения термоядерных двигателей энергией:

(Примечание: Энергия деления 1 кг 235U равна ~ 1,91•1010 ккал)

Преимущества перед ядерными двигателями на основе реакций деления

Сравнительные расходы масс топлива ядерных и термоядерных двигателей при полётах к объектам Солнечной системы

Цель полёта (Планета) Отношение начальной и конечной массы ракеты (М0/М)
Движитель на основе реакций деления Термоядерный двигатель на основе ЛТС
Луна 1,4 1,02
Венера 6 1,17
Марс 5 1,15
Меркурий 42 1,37

Основные недостатки

Основными недостатками ЛТЯРД могут являться:

  • Мощное нейтронное излучение (в зависимости от типа применяемого топлива).
  • Испарение внутренней поверхности реакционной камеры двигателя за счёт интенсивного нагрева рентгеновским излучением.
  • Деградация во времени поверхностей (линз, зеркал) лазерной оптики за счёт «запыливания» продуктами термоядерных реакций, и воздействия рентгеновского и корпускулярного излучений.
  • Чувствительность точной оптики и электромагнитной системы к резким ускорениям большой величины (разгон двигателя должен быть плавным, с плавным выходом на необходимый уровень мощности).
  • Особо высокие требования к чистоте и качеству термоядерных мишеней.
  • Высокий уровень капиталовложений в конструкцию двигателя и связанных систем обеспечения.

Основной комплекс базовых задач выполняемый с помощью ЛТЯРД

Полёты в Солнечной системе

Использование термоядерных двигателей позволяет резко сократить сроки доставки научного оборудования или экипажей к любым планетам Солнечной системы, и в значительной степени ускорить изучение её объектов. Громадный энергозапас термоядерного топлива позволяет более гибко производить маневрирование, легко изменять курс космического корабля и выполнять важные полёты за короткий срок (доставка вооружений, спасение экипажей в глубоком космосе и др).

Грузоперевозки в Солнечной системе

Значительные скорости и тяги ЛТЯРД позволяют наладить межпланетные грузопотоки. В частности доставку добываемых руд и минералов к Земле, Луне, Марсу, буксировку ледяных астероидов для терраформирования планет, корректировку орбит опасных астероидов и др.

Задачи военного характера

Скорость обеспечиваемая ракете с помощью ЛТЯРД позволяет осуществлять быструю доставку необходимых вооружений в пределах Солнечной системы, а так же выполнять второстепенные военные задачи (охрана, патрулирование, снабжение военных объектов).

Межзвёздные полёты автоматических зондов

Термоядерный ракетный двигатель — единственное известное науке на сегодняшний день средство позволяющее ускорять космические аппараты до скоростей меньших но близких к скорости света, и соответственно позволяющее обеспечить разгон межзвёздных зондов. Простые расчёты проведённые в США и СССР показали что при соответствующей концентрации экономических усилий и научно-производственного потенциала уже в наше время осуществление межзвёздного перелёта научно-исследовательской станции небольшой массы (до 1 тонны) возможно практически, и за приемлемый срок (50-70 лет).

См. также

  • Реактивный двигатель
  • Твёрдофазный ядерный реактивный двигатель
  • Газофазный ядерный реактивный двигатель
  • Термоядерный реактор
  • Терраформирование планет
  • Звездолёт
  • Грузоперевозки в Солнечной системе
  • Электроядерный ракетный двигатель
  • Проект Дедалус
  • Космическое оружие

Ссылки

  • Термоядерный ракетный двигатель
  • Космонавтика XXI века: Термоядерные двигатели
  • Российские лазерщики остаются в лидерах
  • Ядерный синтез в лазерной искре
  • ТЯРД «РД-9500КИ» (Советские разработки термоядерных двигателей)
  • New Scientist Space (23.01.2003): Nuclear fusion could power NASA spacecraft
  • ТЯРД «РД-9100КИ» (Советские разработки термоядерных двигателей)
  • Импульсный термоядерный двигатель
  • (ФИАН) Лаборатория «Термоядерные мишени»
  • Проект «Дедалус» (англ)
  • Проект «Дедалус» (англ)
  • Космонавтика XXI века: термоядерные двигатели // газета МФТИ «За науку», 2003.г.
  • И. Моисеев. Проект «Дедал» // 17.12.2002

Литература

masterok

Ядерный ракетный двигатель — ракетный двигатель, принцип действия которого основан на ядерной реакции или радиоактивном распаде, при этом выделяется энергия, нагревающая рабочее тело, которым могут служить продукты реакций либо какое-то другое вещество, например водород.

Давайте разберем варианты и принципы из действия…

Существует несколько разновидностей ракетных двигателей, использующих вышеописанный принцип действия: ядерный, радиоизотопный, термоядерный. Используя ядерные ракетные двигатели, можно получить значения удельного импульса значительно выше тех, которые могут дать химические ракетные двигатели. Высокое значение удельного импульса объясняется большой скоростью истечения рабочего тела — порядка 8—50 км/с. Сила тяги ядерного двигателя сравнима с показателями химических двигателей, что позволит в будущем заменить все химические двигатели на ядерные.

Основным препятствием на пути полной замены является радиоактивное загрязнение окружающей среды, которое наносят ядерные ракетные двигатели.

Их разделяют на два типа — твердо-и газофазные. В первом типе двигателей делящееся вещество размещается в сборках-стержнях с развитой поверхностью. Это позволяет эффективно нагревать газообразное рабочее тело, обычно в качестве рабочего тела выступает водород. Скорость истечения ограничена максимальной температурой рабочего тела, которая, в свою очередь, напрямую зависит от максимально допустимой температуры элементов конструкции, а она не превышает 3000 К. В газофазных ядерных ракетных двигателях делящееся вещество находится в газообразном состоянии. Его удержание в рабочей зоне осуществляется посредством воздействия электромагнитного поля. Для этого типа ядерных ракетных двигателей элементы конструкции не являются сдерживающим фактором, поэтому скорость истечения рабочего тела может превышать 30 км/с. Могут быть использованы в качестве двигателей первой ступени, невзирая на утечку делящегося вещества.

В 70-х гг. XX в. в США и Советском Союзе активно испытывались ядерные ракетные двигатели с делящимся веществом в твердой фазе. В США разрабатывалась программа по созданию опытного ядерного ракетного двигателя в рамках программы NERVA.

Американцами был разработан графитовый реактор, охлаждаемый жидким водородом, который нагревался, испарялся и выбрасывался через ракетное сопло. Выбор графита был обусловлен его температурной стойкостью. По этому проекту удельный импульс полученного двигателя должен был вдвое превышать соответствующий показатель, характерный для химических двигателей, при тяге в 1100 кН. Реактор Nerva должен был работать в составе третьей ступени ракеты-носителя «Сатурн V», но в связи с закрытием лунной программы и отсутствием других задач для ракетных двигателей этого класса реактор так и не был опробован на практике.

В настоящее время в стадии теоретической разработки находится газофазный ядерный ракетный двигатель. В газофазном ядерном двигателе подразумевается использовать плутоний, медленно движущаяся газовая струя которого окружена более быстрым потоком охлаждающего водорода. На орбитальных космических станциях МИР и МКС проводились эксперименты, которые могут дать толчок к дальнейшему развитию газофазных двигателей.

На сегодняшний день можно сказать, что Россия немного «заморозила» свои исследования в области ядерных двигательных установок. Работа российских ученых больше ориентирована на разработку и совершенствование базовых узлов и агрегатов ядерных энергодвигательных установок, а также их унификацию. Приоритетным направлением дальнейших исследований в этой области является создание ядерных энергодвигательных установок, способных работать в двух режимах. Первым является режим ядерного ракетного двигателя, а вторым — режим установки генерирующей электроэнергии для питания аппаратуры, установленной на борту космического аппарата.

Это копия статьи, находящейся по адресу http://masterokblog.ru/?p=20860.Tags: Технологии, Энергия

Рабочим телом в термоядерном двигателе является?

1.Що роблять для зменшення тиску тіла на поверхню? 2.На чому базується явище плавання суден? 3.Визначити тиск на лід ковзаняра масою 80 кг, якщо він с тоїть на двох ногах. Довжина кожного ковзана 40 см, а ширина леза 2 мм 4.Визначте глибину підземної печери, якщо тиск повітря в ній дорівнює 770мм рт. ст., а на поверхні землі — 750 мм рт. ст. 1. Определить длину электромагнитной волны, частота которой составляет 25 МГц. 2. Определите частоту волны видимого света с длиной 450 нм. 3. Определи те энергию заряженного конденсатора емкостью 0,1 Ф и содержащего заряд 0,25 мкКл. 5.Чему равен показатель преломления среды если скорость света уменьшается в 2,5 при переходе в среду. пишите на листочке с дано Движение мяча падающего на землю ударяется о землю и подскакивают несколько раз каждый уменьшая высоту и останавливается. почему? Помогите! срочно нужно решить физику! Вакууме распространяется электромагнитное излучение с частотой ν и длиной волны λ. Его фотоны имеют энергию Е=, 10(-19) Дж , массу m и импульс р. Опре делить неизвестные характеристики электромагнитного излучения. Считайте постоянную Планку h = 6,6·10(-34) Дж·с, скорость света в вакууме с = 3·10(8) м/с. Ответы округлите до сотых. (Число после 10 в скобках означает степень) ….помогите с физикой уже 3 раз пишу и трачу баллы….. Это последние помогите…. ​ Направление электрического тока в витке изображено на рисунке стрелкой. Определи направление линий магнитного поля в точке A.Из предложенных вариантов ответа выбери правильный.1.Направление линий магнитного поля в точке A совпадает с направлением тока.2.В точке A линии магнитного поля направлены к нам.3.Направление линий магнитного поля в точке A определить невозможно.4.В точке A линии магнитного поля направлены от нас.​ ПОМОГИТЕ ПО ФИЗИКЕ ПЖЖЖ Направление электрического тока в витке изображено на рисунке стрелкой. Определи направление линий магнитного поля в точке A .Выбери правильный вариа нт ответа из предложенных.1.Направление линий магнитного поля в точке A совпадает с направлением тока.2.В точке A линии магнитного поля направлены от нас.3.В точке A линии магнитного поля направлены к нам.4.Направление линий магнитного поля в точке A определить невозможно.​ Помогите пж, дам 100 балов!!!!За якою формулою можна розрахувати силу гравітацвйного притягання між двомя космічними кораблями однакової маси m (дивис ь малюнок)?Варіанти відповідей:а) F = G⋅ m2/ b2б) F = G⋅ m2/ 16⋅ b2в) F = G⋅ m2/ 4⋅ b2г) Жодна з формул не підходить.