Самолет с ядерным двигателем

Летающая радиация: самолеты с ядерной силовой установкой

С развитием атомных энергетических установок и обострением отношений между США и СССР ученые обеих сверхдержав задумались о бомбардировщиках-атомолетах. Перелететь Атлантику без дозаправки и вернуться домой — мечта военных и политиков времен холодной войны. Но ни огромные инвестиции, ни перспективные разработки не смогли развить новое направление в авиации до практического применения. Сложно, дорого и опасно — за два десятка лет разработок проектировщики так и не смогли решить основные проблемы атомолетов, связанные с радиацией. 20 февраля 2020 09:00

YB-60

Американцы в развитии атомолетов были сильно впереди Советов. Перспективные разработки в этом направлении в Штатах велись еще с середины 1940-х, тогда как в СССР взялись за новое направление только к концу 1950-х. Первый американский прототип самолета с ядерной установкой был построен на базе бомбардировщика Convair YB-60 (по сути глубоко модернизированный B-36) с ядерной установкой порядка 50 мегаватт тепловой мощности. Силовой агрегат был построен по «открытому» типу: горячий воздух от энергоблока поступал по специальным трубопроводам к четырем турбореактивным двигателям GE XJ53 и выбрасывался в атмосферу. Одного воздуха для охлаждения было недостаточно, поэтому систему дополнили водяным охлаждением на основе раствора бора. Для максимальной радиационной защиты экипажа систему установили в заднем грузовом отсеке самолета.

Так как «открытые» двигатели довольно сильно загрязняли атмосферу и оставляли большой радиационный след, наряду с ними в YB-60 планировалось использовать и классические турборективные силовые агрегаты. Они трудились во время взлета и посадки воздушного судна, а уже вдали от населенных пунктов и аэродромов подключалась ядерная установка.

NB-36H Crusader

Для изучения воздействия излучения ядерной силовой установки на экипаж и системы самолета американцы построили летающую лабораторию NB-36H Crusader («Крестоносец»). Это все тот же B-36, на котором в задней части фюзеляжа была установлена экспериментальная ядерная силовая установка мощностью всего в один мегаватт. Она имела водяное охлаждение и никак не была связана с силовыми установками самолета: реактор использовался исключительно для изучения воздействия радиации. Кабина воздушного судна весила порядка 12 тонн и была защищена толстенными стальными и свинцовыми плитами.

Во время полетов за NB-36H Crusader следовал другой B-36 с измерительной аппаратурой и отрядом морпехов. В случае аварии десантники должны были оцепить место падения NB-36H и ликвидировать последствия. В общей сложности испытательная лаборатория совершила 47 успешных полетов, десант, к счастью, не пригодился.

Ту-95 ЛАЛ

В СССР тоже была своя летающая лаборатория для изучения защиты ядерного реактора, построенная по такому же принципу, что и американский «Крестоносец». С серийного Ту-95 сняли все вооружение, а в заднем отсеке поместили ядерную силовую установку. Экипаж отделяла свинцовая перегородка толщиной 15 см, по всему судну были установлены датчики для фиксации уровня радиации. Как и у американского NB-36H, атомная энергоустановка Ту-95 ЛАЛ использовалась только в качестве источника излучения.

В 1961 году за три месяца испытаний Ту-95 ЛАЛ совершил 34 успешных полета и доказал, что при должной защите ядерная установка может быть установлена на воздушное судно. Однако, проблемы, связанные с ее эксплуатацией и возможные последствия при крушении самолета так и не удалось решить. В итоге через несколько лет с Ту-95 ЛАЛ сняли силовую установку и порезали на металлолом.

М-60

Если бы проект конструкторского бюро Мясищева был реализован, то это был был бы первый в мире атомолет. Проектировщики взяли за основу бомбардировщик М-50, на который планировалось установить четыре ядерных турбореактивных двигателя, работающих по открытому типу. Экипаж защищала толстостенная капсула без какого-либо остекления, а для ориентации предполагалось использовать перископ и РЛС. Тем не менее, из-за сильного радиационного фона М-60 хотели даже сделать беспилотным, а в качестве еще одной альтернативы в экипаж предлагали набирать летчиков околопенсионного возраста. Проблемы были и с наземным обслуживанием самолета, ведь открытый тип энергоустановки нещадно фонил даже будучи в «холодном» состоянии.

М-30

Другой советский бомбардировщик с атомной силовой установкой проектировался с учетом всех недостатков М-60. Его шесть ядерных турбореактивных двигателей работали по «закрытому» циклу: передача тепла от реактора к воздуху в двигателях происходила не контактным способом, а через теплоноситель (литий и натрий в жидком состоянии). Плюс сама конструкция агрегатов предполагала, помимо прочего, использование авиационного керосина. Использование подобной силовой установки решало сразу несколько проблем предшественника: для защиты самого реактора и экипажа требовалось меньше усилий, в разы упрощалось наземное обслуживание борта, а радиационный фон и выбросы в атмосферу у М-30 должны были быть в пределах нормы. Несмотря на то, что в Советском Союзе не жалели денег на военные разработки, проект М-30 сочли сверхдорогим и сложным. Атомолет так и остался лишь проектом.

masterok

Эйфория от успешных разработок атомного оружия и применения атомной энергии для использования в электростанциях, кораблях (советские ледоколы), подводных лодках, послужила толчком для безумной идеи — использовать ядерные реакторы на самолетах. В первую очередь на бомбардировщиках.

Некоторое время назад я вам рассказывал про СОВЕТСКИЙ АТОМНЫЙ САМОЛЕТ , посмотрим что в то время происходило по этой тематике по другую сторону океана.

Весной 1946 г. между министерством ВВС и Комиссией по атомной энергии США было заключено соглашение о начале программы NEPA (Nuclear Energy Propulsion for Aircraft), целью которой стало исследование проблем, связанных с разработкой самолета c атомной силовой установкой (АСУ). По мнению заказчиков из ВВС, самолет с АСУ мог использоваться в качестве стратегического бомбардировщика или разведчика, способного нести боевое дежурство в воздухе без дозаправки в течение нескольких суток.

Главным событием проекта стал взлет самолета B-29, в бомбоотсеке которого находилась капсула с радием. Сотрудники проекта замерили уровни радиации по всему периметру ЛА и пришли к выводу, что реальная масса реактора и защиты окажется очень велика, а значит поднять их сможет только очень большой самолет. Реальный прогресс в этом проекте достигнут не был, но зато были заданы ключевые вопросы, такие как:

1. Как передавать тепло от реактора к двигателям?
2. Как охлаждать реактор в полете?
3. Как уберечь экипаж от пагубного влияния радиации? Вторым этапом развития «атомолета” стала конференция названная «Проект Легсингтон”. На ней пришли к неутешительным выводам, а именно было сказано, что до взлета вышеупомянутого самолета может пройти порядка 15 лет. Также на ней впервые были рассмотрены две принципиально отличающиеся друг от друга схемы соединения двигателей и реактора.Convair YB-60 Первую схему назвали открытой. Принцип ее работы заключался в том, что воздух попадая в камеру сгорания нагревался непосредственно проходя через активную зону реактора. Такой способ был очень простым, требовал минимальное количество конструкторских решений. С другой стороны воздух, взаимодействуя с частицами атомного топлива тоже становился радиоактивным и выходя из СУ загрязнял окружающую среду, а из этого следовало в лучшем случае, что экипаж не сможет дышать атмосферным воздухом. Вторую схему назвали закрытой. Она отличалась от открытой тем, что воздух нагревался не от самого реактора, а от теплообменника. Такая конструкция была довольно сложна в реализации, но зато выходивший из силовой установки воздух оставался абсолютно чистым, а значит экипаж мог им дышать. Еще очень много внимания участники конференции уделили защите экипажа.
Третьим этапом стала новая программа под названием ANP, что в переводе означало атомная сила самолета. Первостепенной ее задачей было создание действующего ЛА, оснащенного ядерной СУ. В итоге было отдано предпочтение схеме соединения открытого цикла. Предполагалось разместить СУ P-1 на самолет YB-60. Потом была произведена попытка отработки компоновки и узлов на новом оригинальном передовом самолете, и уже проверенном самолете B-58 Hustler. Но размеры самолета не позволяли разместить на его борту ни реактор, ни тем более дополнительное оборудование.

В ходе исследований выбор пал на самолет B-36 “Peacemaker”.

Переоборудованный бомбардировщик B-36 (обозначенный как NB-36H), несущий действующий реактор для изучения вопроса постройки самолета с ядерной энергетической установкой.

Между 1946 и 1961 годами ВВС и Комиссия по атомной энергии США потратили более 7 миллиардов долларов на разработку самолета с атомной силовой установкой. Хотя такой самолет никогда и не поднимался в воздух, ВВС переделали этот бомбардировщик B-36, известный как экспериментальный ядерный самолет, для несения действующего трехмегаватного реактора с воздушным охлаждением, чтобы оценить возможные эксплутационные проблемы (он сделал 47 полетов над Техасом и Нью-Мексико между июлем 1955 и мартом 1957).

Кликабельно

Кабина экипажа в экранированной защитной капсуле располагалась в носовой части фюзеляжа. Позади нее предусмотрели дополнительную панель из материала, хорошо поглощающего нейтроны. Биологическая защита самого реактора была «теневой» (главным образом прикрывалось направление на кабину), что позволило уменьшить толщину и массу слоев и дало возможность «вписать» реактор в обводы фюзеляжа.

Погрузка кабины с защитной оболочкой в NB-36

Проблему радиационной защиты наземного персонала после приземления атомного самолета намеревались решить следующим образом. Самолет с остановленным реактором буксировался на специальную площадку. Здесь АСУ снималась с самолета и опускалась в глубокую шахту, где некоторое время выдерживалась для спада уровней излучения, а затем обслуживалась с применением дистанционных манипуляторов. Первые испытательные полеты X-6 планировали осуществить в 1956 г.

Кабина NB-36

Левая инженерная панель NB-36

Правая инженерная панель NB-36

NB-36 после полета с незапущенным реактором.

Впервые с установленным и дествующим реактором он поднялся в воздух 17 сентября 1955 г.

Полёты проводились над пустынными районами Техаса и Нью-Мексико. Любопытно, что летающую лабораторию сопровождал борт со взводом морпехов. В случаи аварии ядерного самолёта, они должны были десантироваться и взять место падения под охрану.

Для испытания разрабатываемой радиационной защиты, на тяжелом бомбардировщике В-36Н, в бомбоотсеке установили реактор мощностью 1 МВт. Экипаж летающей лаборатории находился в защитной капсуле, но сам реактор не был окружен биологической защитой — не позволяли массо-габаритные характеристики.

Стационарный стенд реактор-двигатель для отработки двигателей.

Двигатели General Electric X 211

А с 1958 по 1960 год американцы успешно испытывали ядерную энергетическую установку HTRE-3 мощностью 35 Мвт, которая обеспечивала энергией два двигателя. До создания P-1 и ядерного самолёта оставалось совсем немного. Была построена и проверена в воздухе радиационная защита, на земле успешно испытали HTRE-3. Комплекс наземного обслуживания уже достраивался.

Но 28 марта 1961 года Кеннеди закрыл программу. Видимо, он находился под впечатлением успехов советской ракетно-космической программы и, как Хрущев, посчитал, что как стратегическое оружие бомбардировщик с ядерным реактором морально устарел, еще не взлетев. Так же сказались метания по ходу программы ANP, порожденные опасением отстать от СССР.

Рисунок самолета Convair HB-36H

источники

Особый двигатель

Турбореактивный двигатель с атомным реактором (ТРДА) создан на основе обычного турбореактивного двигателя (ТРД). Только в отличие от двигателя ТРД, тягу в атомном движке обеспечивает нагретый воздух, проходящий через реактор, а не выделяемые при сжигании керосина раскаленные газы.

Особенность конструкции

Глядя на макеты и эскизы всех атомных самолетов того времени, можно заметить одну важную деталь: в них отсутствует кабина для экипажа. Для защиты от радиационного излучения экипаж ядерного самолета располагался в герметичной свинцовой капсуле. А отсутствие визуального обзора заменили оптическим перископом, телевизионным и радиолокационными экранами.

Автономное управление

Осуществлять взлеты и посадки при помощи перископа – задача не из легких. Когда инженеры это осознали, появилась логичная мысль – сделать самолет беспилотным. Это решение также позволяло уменьшить вес бомбардировщика. Однако по стратегическим соображениям проект в ВВС не одобрили.

Атомный гидросамолет М-60М

Вместе с тем, под индексом М-60М параллельно разрабатывался сверхзвуковой самолет с атомным двигателем, способный осуществлять посадку на воду. Такие гидросамолеты размещали в специальных самоходных доках на базах на побережье. В марте 1957 года проект был закрыт, так как самолеты на атомном двигателе излучали сильный радиационный фон в местах базирования и прилегающей акватории.
Отказ от проекта М-60 вовсе не означал прекращения работ в этом направлении. И уже в 1959 году авиаконструкторы принимаются за разработку нового реактивного самолета. На этот раз тягу его двигателей обеспечивает новая атомная силовая установка «закрытого» типа. К 1960 году предварительный проект М-30 был готов. Новый двигатель снижал радиоактивный выброс, и на новый самолет стало возможным установить кабину для экипажа. Считалось, что уже не позднее 1966 года М-30 поднимется в воздух.

Похороны ядерного самолета

Но в 1960 году Хрущев на совещании по перспективам развития стратегических систем оружия принял решение, за которое его до сих пор называют могильщиком авиации. После разобщенных и нерешительных докладов авиаконструкторов, им было предложено взять на себя часть заказов по ракетным темам. Все разработки самолетов на атомном двигателе были заморожены. По счастью или к сожалению, узнать каким был бы наш мир, если бы авиаконструкторы прошлого все-таки завершили свои начинания, теперь уже не представляется возможным.

Атомолёт: козырная карта холодной войны

В послевоенное время США и СССР одновременно начали разработку сверхсекретного проекта – самолёта на атомном двигателе. Новый атомолёт мог бы месяцами находиться в воздухе без дозаправки. Начинённый атомными бомбами, он становился идеальной машиной для убийства в случае мировой ядерной войны.

Борьба за расстояние

В послевоенное время мир захлестнула настоящая «атомомания». Атомной энергии находили всё новые и новые применения. Со дня на день ждали появления дешёвого электричества, автомобилей, поездов и прочего вида транспорта на атомной тяге. Существовал даже безумный проект ударить ядерными бомбами по полюсным ледовым шапкам, чтобы сделать климат планеты теплее.

Военная индустрия тоже возлагала большие надежды на атом. Изобретение атомной бомбы в корне меняло всю стратегию войны. Отныне можно было добиться победы, нанеся несколько точечных ударов по промышленным центрам противника. Оставалось дело за малым – добраться до них. Все важные стратегические объекты расположены далеко от границы в хорошо защищённом тылу, куда без дозаправки не мог долететь ни один бомбардировщик. И СССР, и США крайне нуждались в новом типе самолёта, способном преодолевать за раз десятки тысяч километров. Для осуществления этих задач был необходим совершенно новый тип двигателя. И здесь на помощь военным вновь пришёл атом.

Прямоточный двигатель

Атомный двигатель по принципу действия намного проще реактивного. В случае последнего авиационное топливо сжигается за счёт кислорода, что вызывает быстрое нагревание воздуха. Такой нагретый воздух расширяется, и возникает сила, толкающая самолёт вперёд. Реактивный двигатель помогает достигать огромной скорости, но он потребляет и большое количество топлива, которое самолёт просто не в состоянии перевозить. Это либо существенно ограничивает дальность полёта, либо делает машину тихоходной, а значит, лёгкой мишенью для противника. Но атомному двигателю не нужны тонны топлива. Процесс сгорания кислорода заменяет тепло, получаемое от реактора. Проще говоря, для полёта атомолёту нужен лишь воздух да работающий реактор. Он может находиться в воздухе любое количество времени – месяцы, годы, не теряя при этом скорости. Это не только позволило бы атаковать дальние цели противника, но и давало возможность постоянно патрулировать воздушные границы и предупреждать внезапные атаки. Миру стало ясно – страна, которая первой построит атомолёт, победит в холодной войне.

Безопасность vs вес

Convair B-36

За основу для атомолёта были взяты самолёты с высокой грузоподъёмностью, рассчитанные на дальнюю авиацию. Американцы выбрали модель самого мощного межконтинентального бомбардировщика, когда-либо создававшегося в США – Convair B-36, или «Миротворца». Он преодолевал расстояние до 13 тысяч километров. В СССР за основу взяли бомбардировщик-ракетоносец ТУ-95 и сверхзвуковой стратегический самолёт M-50 . Планировалось, что атомолёт будет иметь дальность полёта не менее 25 тыс. км при скорости 3000−3200 км/ч и высоте полёта 18−20 км.

Оставалось только создать атомный двигатель. Но, несмотря на простой принцип работы реактора, техническое решение оказалось неожиданно сложным. Было разработано два альтернативных варианта, каждый со своим ключевым недостатком.

Наиболее простым был так называемый «прямоточный двигатель». Холодный воздух поступал с одного конца, проходил сквозь маленькие отверстия внутри реактора, сильно нагревался и производил толкающую силу на другом конце. Всё бы хорошо, если бы не радиоактивное загрязнение воздуха при его проходе через реактор. То есть, атомолёт на прямоточном двигателе, каким бы ни была его защита от радиации, оставлял бы позади себя клубы радиоактивного воздуха. Это подвергало опасности не только экипаж, но и любую местность, которая пролегала вдоль пути такой машины.

Второй вариант был более экологичным. Предлагалось расположить реактор отдельно от двигателя. Он производил бы огромное количество энергии, которая передавалась бы двигательной системе за счёт горячих жидких металлов. Таким образом, воздух не проходил бы непосредственно сквозь реактор, и это решило бы проблемы выброса в атмосферу радиоактивных веществ. Но для этого было необходимо некое вещество, стоящее между воздухом и реактором, которое передавало бы тепло и отфильтровывало загрязнение. Для этой задачи идеально подходил свинец, но он утяжелял реактор настолько, что его было практически невозможно поднять в воздух, не говоря уже о достижении с ним сверхзвуковой скорости.

Атомный беспилотник

Схематический рисунок М-60

Итак, проблемы безопасности экипажа и вес реактора стали ключевыми для разработчиков атомолётов. Но им нашли решение. Конструкционное бюро Мясищева, которому было поручено сделать стратегический бомбардировщик с ядерной силовой установкой, подготовил проект M-60, в котором экипаж планировалось разместить в герметичной многослойной (преимущественно свинцовой) капсуле, составлявшей 25% процентов от веса всего самолёта, то есть, порядка 60 тонн. Отсутствие визуального обзора планировалось компенсировать оптическим перископом, а также телевизионными и радиолокационными экранами.

Правда, вскоре стало ясно, что управлять 250-тонной машиной, оснащённой ядерным реактором, примкнув к окуляру перископа, было весьма опасной затеей. Поэтому команда Мясищева вначале оснастила самолёт автоматической системой вождения, которая обеспечивала взлёт, набор высоты, заход на цель, наведение, возвращение и посадку, а потом они и вовсе отказались от наличия экипажа, предложив первый в мире проект атомного беспилотника.

Но дрон с ядерным реактором слишком опередил своё время. В армии сочли беспилотник слишком опасной новинкой, уязвимой для противника. К тому же, такой бомбардировщик после одного полёта должен был «фонить» ещё пару месяцев, что делало невозможным его техническое обслуживание.

Чернобыль в небе

Схематический рисунок М-30

Следующий проект Мясищева, атомолёт М-30, предполагалось оснастить безопасным и компактным ядерным двигателем закрытого типа. Но его нужно было ещё создать. Разработку поручили конструкционному бюро Кузнецова. Главной проблемой был размер реактора. В отличие от атомных реакторов ледоколов и субмарин, которые не имеют ограничения по размеру и весу и потому огромны, реактор атомолёта должен был быть минимальным по своим габаритам. По словам эксперта и участника проекта Анатолия Трянова, лишний килограмм двигателя увеличивал вес всего самолёта на три и больше килограмм. Генеральный конструктор авиапрома СССР Андрей Туполев постоянно критиковал разработчиков: «Ваш реактор похож на огромный дом, так знайте же, что дома по воздуху не летают».

Ту-95 ЛАЛ, на фото виден выпуклый фонарь над реактором

В бюро объявили настоящую войну каждому грамму лишнего веса реактора. Тому, кто решит эту проблему, обещали денежную премию. В итоге выход был найден. Ядерный реактор получился размером с небольшой шкаф. Даже сам Курчатов, отец атомной бомбы, при виде реактора не поверил в его подлинность: «Это не может быть реактор, вы показываете мне макет».

Демонтаж реактора из самолёта Ту-95 ЛАЛ

Новинку вывезли на испытательный полигон в Семипалатинск. Но после ряда экспериментов выяснилось, что даже тот вариант реактора, который создатели считали наиболее безопасным, представляет большую опасность для атмосферы и окружающей среды из-за радиоактивных выбросов. К тому же, самолётам свойственно падать. А урана в реакторе атомолёта было не меньше, чем на чернобыльской АЭС. Сама мысль о том, что по небу летает ядерный реактор, который когда-то может упасть, была неприемлемой.

Роковой 60-й

Хрущёв и Терешкова

Что в Америке, что в СССР проекты атомолётов были закрыты по одной и той же причине – внимание военных переключилось на более приоритетные разработки. В США это были первые атомные подлодки, в СССР на атомной авиации поставили крест ракетчики.

В 1960 году в Москве прошло особо важное совещание по перспективам развития стратегических систем оружия. На вопрос, сколько времени нужно, чтобы поднять в воздух стратегический бомбардировщик с ядерным припасом на борту, авиаконструкторы ответили: «сутки», а ракетчики ограничились минутами: «Нам бы только гироскопы раскрутить». К тому же ставилась под сомнение возможность атомолётов прорваться сквозь систему ПВО противника, в то время как баллистические ракеты не научились перехватывать и сегодня. У ракётчиков был ещё один козырь – они сумели убедить руководство, что стоят на пороге создания «абсолютного оружия», атомного спутника, который мог бы постоянно кружить вокруг земли с ядерным грузом, и по одному нажатию кнопки бросал бы его на нужную цель. Так перспектива «кнопочной войны», представленная Никите Хрущеву ракетчиками, поставила точку на советских атомолётах. По итогам совещания все перспективные проекты атомолётов были закрыты, а бюро Мясищева переквалифицировано на ракетно-космическую тематику.

Охотник за атомными подлодками

Тяжёлый ракетный подводный крейсер стратегического назначения проекта 941 «Акула»

И всё-таки даже после рокового совещания у разработчиков атомолётов ещё теплилась надежда, что их трудам найдётся достойное применение. Проект был частично воскрешён с появлением в этом же году американских «поларисов» – двухступенчатых твёрдотопливных баллистических ракет, размещавшихся на атомных подводных лодках. Была высказана идея о создании атомолёта Ан-22ПЛО – охотника за подводными лодками, который мог бы неделями барражировать над местом, где лодки скрывались под водой, и в случае пуска ракеты – топить их. Но и на этот раз вмешалась политика. С конца 60-х годов в отношениях между СССР и США началась разрядка. Необходимость в «охотниках» отпала, тем более что против атомолётов выступал министр авиационной промышленности Пётр Дементьев, считавший этот проект слишком амбициозным. Судьба атомолётов в СССР была решена. Но идея создать самолёт, способный находиться в воздухе практически неограниченное время, осталась. В начале XXI века Америка заявила о начале работы над беспилотником, оснащённым ядерным двигателем. И несмотря на то, что проекту пока не дали ходу, кто знает, возможно, эра атомолётов уже не за горами.

В середине 50-х — начале 60-х годов прошлого века в СССР начали разрабатывать самолёт с ядерной силовой установкой. Летающая атомная лаборатория на базе самолёта Ту-95М, пройдя испытания на наземном стенде, в 1962—1963 годах провела серию опытных полётов, но вскоре программа была свёрнута (см. «Наука и жизнь» № 6, 2008 г.). Результаты тех испытаний сегодня практически забыты. А тех, кто создавал атомный самолёт, кто может собрать и обобщить уникальный опыт, в живых остаётся, увы, всё меньше. Вспоминает участник проекта, учёный секретарь НИИ авиационного оборудования Александр Васильевич Курганов, в прошлом ведущий инженер по лётным испытаниям Лётно-исследовательского института и руководитель бригады по испытаниям бортового оборудования на летающей атомной лаборатории.

Наука и жизнь // Иллюстрации Летающая атомная лаборатория, созданная на базе самолёта Ту-95М и оснащённая атомным реактором — имитатором реальной атомной силовой установки. Распределение потока нейтронов, выбрасываемых атомным реактором ВВР-2, установленным на Ту-95М. Испытательный полёт проходил при одном открытом шибере (заслонке) защиты реактора. Схема водо-водяного энергетического реактора ВВЭР-2, на котором проводились первые испытания авиационного оборудования на радиационную стойкость. Эти часы и записку А. В. Курганов получил из рук Генерального конструктора А. Н. Туполева за участие в создании самолёта с атомным двигателем. ‹

В 1950-х годах Советский Союз делал успешные шаги в развитии атомной энергетики. Уже работала первая отечественная атомная электростанция, разрабатывались проекты атомных ледоколов и подводных лодок. Руководитель советского атомного проекта Игорь Васильевич Курчатов решил, что пришло время поставить вопрос о создании атомного самолёта.

Преимущества ядерных двигателей были очевидны: практически неограниченная дальность и длительность полёта при минимальном расходе топлива — всего несколько граммов урана на десятки часов полёта. Такой самолёт открывал самые заманчивые перспективы перед военной авиацией. Однако первые проработки проекта показали, что полностью защитить самолёт от выхода радиоактивных излучений за пределы конструкции реактора не удаётся. Тогда было принято решение создать так называемую теневую защиту кабины пилотов, а всё бортовое оборудование вне кабины, подверженное гамма-нейтронному облучению, самым тщательным образом обследовать. Первым делом надо было выяснить, как поведут себя незащищённые приборы при работающем реакторе.

Влияние радиоактивного излучения на бортовое оборудование изучали сотрудники Лётно-исследовательского института (ЛИИ) и Института атомной энергии (ИАЭ). Так сложилось содружество инженеров и конструкторов, специалистов по авиационному оборудованию и физиков-ядерщиков. Для исследований в ИАЭ нам предоставили реактор ВВЭР-2, в котором вода охлаждает аппарат и одновременно служит замедлителем нейтронов до энергий, требуемых для поддержания управляемой цепной реакции.

Ещё в самом начале экспериментов специалисты столкнулись с рядом трудностей. Во-первых, исследуемые приборы и аппаратура довольно сильно нагревались за счёт поглощения энергии излучения. Во-вторых, полностью исключался визуальный контроль, да и какой-либо контакт с исследуемыми образцами. В-третьих, для чистоты экспериментов было очень важно проводить исследования в условиях, по возможности близких к условиям полёта, а на высоте негерметичная авиационная аппаратура работает в разрежённой атмосфере. Чтобы создать разрежение воздуха, сконструировали малогабаритные барокамеры, из которых специальный компрессор откачивал воздух. Исследуемые приборы устанавливали в барокамеры и помещали их в канал атомного реактора вблизи его активной зоны.

Впоследствии к экспериментам были подключены: первая атомная электростанция в Физико-энергетическом институте им. А. И. Лейпунского (ФЭИ), облучательные установки в филиале Физико-химического института им. Л. Я. Карпова (ФХИ) в Обнинске. В результате этих работ впервые в стране были определены реальная радиационная стойкость бортового авиационного оборудования и наиболее чувствительные изделия, элементы и материалы, выявлена «иерархия» радиационной стойкости по видам оборудования, решены другие важные вопросы.

Следующим этапом работы по программе создания атомного самолёта стали разработка и строительство наземного стенда летающей атомной лаборатории (ЛАЛ). Стенд нужен был для проведения дозиметрических исследований в реальной конфигурации самолёта Ту-95М, а также для оценки работоспособности изделий в реальных условиях. На стенде исследовали радиотехническую бортовую аппаратуру и электротехнические агрегаты, оценивали величину радиоактивности, вызванной воздействием нейтронов, а также её спад во времени. Эти данные были очень важны с точки зрения эксплуатации и послеполётного обслуживания самолёта.

Вспоминается переполошивший всю группу эпизод, связанный с работой реактора. Однажды во время контрольного осмотра оператор заметил на водной поверхности бака обильную белую пену, похожую на пену стирального порошка. Атомщики забеспокоились: если это органическая пена, ещё полбеды — где-нибудь прокладка «газит», а если неорганическая — гораздо хуже — возможна коррозия алюминия, из которого сделаны корпуса тепловыделяющих элементов (ТВЭЛов), а в них находится ядерное горючее — уран. Все понимали, что разрушение корпусов ТВЭЛов может привести к катастрофическим последствиям.

Чтобы разобраться в ситуации, в первую очередь надо было определить химический состав пены. Взяли образцы и поехали в Семипалатинск, в ближайшую лабораторию. Но химики так и не разобрались, органика это или нет.

На объект срочно прилетел один из ведущих специалистов ИАЭ и посоветовал первым делом промыть бак реактора спиртом. Но эта процедура не помогла — аппарат продолжал гнать пену. Тогда решили ещё раз тщательно осмотреть всю конструкцию реактора изнутри. Чтобы не «схватить» повышенную дозу радиации, работать внутри бака можно было не более пяти минут. Осмотром занимались молодые механики из ОКБ им. А. Н. Туполева. Наконец, один из них с криком «Нашёл!» выбрался из бака, держа в руках кусок микропористой резины. Как туда попал этот посторонний предмет, можно только догадываться.

В мае 1962 года начался этап лётных испытаний, в котором участвовала наша бригада. Дозиметрические и другие исследования в условиях полёта показали, что во время работы реактора дальность радиосвязи сокращается под воздействием потока нейтронов, а находящийся в специальных ёмкостях вне защищённой кабины кислород, которым экипаж дышит во время высотного полёта, подвергается активации (в нём обнаружили молекулы озона — О3). При этом элементы электрооборудования работали достаточно устойчиво.

Масштабная и очень интересная работа по созданию атомного самолёта, к сожалению, не была завершена. Программу закрыли, но участие в ней осталось в памяти на всю жизнь. В дальнейшем мне приходилось заниматься разными лётно-космическими экспериментами, лётными испытаниями на первом сверхзвуковом пассажирском самолёте Ту-144 и запуском космического корабля многоразового использования «Буран». Я получал разные награды, но самая дорогая среди них — часы, которые вручил мне Генеральный конструктор академик Андрей Николаевич Туполев за участие в проекте создания атомного самолёта. Часы до сих пор великолепно работают и стали семейной реликвией.