Двигатель гном рон

Содержание

Ротативный двигатель.

Такие двигатели отличались плавностью и равномерностью хода. Зажигание производилось последовательно в каждом цилиндре через один по кругу.
Второй особенностью было хорошее охлаждение. Металлургическая промышленность в те времена была не настолько развита, как сейчас и качество сплавов (в плане термостойкости) было не слишком высоким. Поэтому требовалось хорошее охлаждение.

Скорости полета самолетов были не высокие, поэтому простое охлаждение набегающим потоком стационарного движка было недостаточным. А ротативный двигатель здесь находился в более выгодном положении, потому что сам вращался с достаточной для эффективного охлаждения скоростью и цилиндры хорошо обдувались воздухом. При этом они могли быть как гладкими, так и оребренными. Охлаждение было достаточно эффективным даже при работе двигателя на земле.

Расцвет ротативных двигателей пришелся на первую мировую войну. В то время авиация уже достаточно серьезно участвовала в боевых действиях и воздушные бои не были редкостью. Самолеты и двигатели для них производились всеми крупными участниками войны.

Из двигателестроительных одной из самых известных была французская фирма «Societe des Moteurs Gnome», в свое время занимавшаяся производством двигателей внутреннего сгорания для промышленного производства. В 1900 году она купила лицензию на производство маленького одноцилиндрового стационарного двигателя (мощность 4 л.с.) «Gnome» у немецой фирмы Motorenfabrik Oberursel. Это движок продавался во Франции под французским наименованием «Gnome» и при этом настолько успешно, что наименование это было использовано в названии фирмы — «Societe des Moteurs Gnome».

В Российской Империи двигатель «Gnome» послужил прототипом для двигателей Теодора-Фердинанда (Григорьевича) Калепа. Т.Г.Калеп в начале 1911 года сначала решил приступить к производству на своем заводе двигателей «Gnome», но попытка договориться с фирмой «Societe des Moteurs Gnome» окончилась неудачей, т.к. эта французская фирма поставила условие отдавать ей 2/3 чистого дохода.

Тогда Калеп решил спроектировать на своем заводе новый двигатель. Проект двигателя Калеп разрабатывал совместно с молодым инженером Шухгальтером. Конструкторам удалось значительно усовершенствовать конструкцию двигателя «Gnome» и создать двигатель, более надежный чем «Gnome». Прежде всего был изменен способ крепления цилиндров на картере. У двигателя «Gnome» картер состоял из нескольких частей, соединенных болтами — это весьма увеличивало массу двигателя. Калеп сделал картер всего из двух частей, причем плоскость разъема не совпадала с плоскостью, в которой лежали геометрические оси цилиндров, а была отнесена несколько в сторону. Это существенно упрощало сборку двигателя, т.к. можно было крепить цилиндры, защемляя их между двумя частями картера, причем цилиндры вставлялись в отверстия большей части картера.
Калеп усовершенствовал двигатель «Gnome», увеличив его прочность и в тоже время снизив на 7 кг его массу и уменьшив на 85 шт. число деталей. При этом размеры двигателя Калепа не превышали размеров двигателя «Gnome». 22 ноября 1911 г. Т.Г.Калеп подал заявку за № 50497 на получение патента на авиационный двигатель «внутреннего горения с радиально укрепленными на кривошипной камере вращающимися цилиндрами», которая была удовлетворена и автор получил патент на этот двигатель за № 25057.

Двигатели «Калеп» устанавливались на самолёты «Хиони», «Стеглау» и др. Впоследствии Т.Калеп создал ещё более мощные двигатели мощностью 80 л.с. и 100 л.с., которые устанавливались на лицензионные «Ньюпоры» и другие отечественные истребители и разведчики.
Увы, хоть слава и досталась Ф.Г.Калепу, моторы для российского Воздушного флота делались во Франции — нелегко было небольшому заводу соревноваться в рекламе с солидной иностранной фирмой.

В 1913 году, будучи больным, Теодор Калеп поехал на испытания своего мотора, проводимые в Риге военным ведомством. Мотор сочли хорошим, а 47-летний Калеп через несколько дней умер. Можно сказать, сгорел на работе…

Двигатель «Калеп-60».

Двигатель «Калеп-80» в музее ВВС Монино.

В дальнейшем на базе «Gnome» был разработан ротативный двигатель «Gnome Omega», имевший немалое количество модификаций и устанавливавшийся на самые различные самолеты. Известны так же другие массово производившиеся двигатели этой фирмы. Например, «Gnome 7 Lambda» – семицилиндровый, мощностью 80 л.с. и его продолжение «Gnome 14 Lambda-Lambda» (160 л.с.), двухрядный ротативный двигатель с 14-ю цилиндрами.

Ротативный двигатель «Gnome 7 Omega».

Двигатель «Gnome 7 Omega» на самолете.

Широко известен двигатель «Gnome Monosoupape» (один клапан), начавший выпускаться в 1913 году и считавшийся одним из лучших двигателей в начальный период войны. Этот «лучший двигатель» имел всего один клапан, использовавшийся и для выхлопа и для забора воздуха. Для поступления топлива в цилиндр из картера, в юбке цилиндра был сделан ряд специальных отверстий. Двигатель был безкарбюраторный и из-за упрощенной системы управления был легче и потреблял, к тому же меньше масла.

Двигатель «Gnome Monosoupape» Type N.

Управления у него не было практически никакого. Был только топливный кран, подававший бензин через специальную форсунку (или распылитель) в полый неподвижный вал и далее в картер. Этим краном можно было пытаться обогащать или обеднять топливо-воздушную смесь в очень узком диапазоне, от чего было мало толку.

Подвод топлива в цилиндр двигателя «Gnome Monosoupape». Crank Case — картер, Ports — подводящие отверстия.

Пытались использовать с целью управления изменение фаз газораспределения, но быстро от этого отказались, потому что начали гореть клапана. В итоге движок постоянно работал на максимальных оборотах (как, впрочем и все ротативные двигатели) и управлялся только отключением зажигания (об этом чуть ниже).

Другой известной французской фирмой, производившей ротативный двигатели была фирма «Societe des Moteurs Le Rhone», начавшая свою работу с 1910 года. Одними из самых известных ее двигателей были «Le Rhone 9C» (мощность 80 л.с.) и «Le Rhone 9J» (110 л.с.). Характерной их особенностью было наличие специальных трубопроводов от картера к цилиндрам для подвода топливо-воздушной смеси (немного похоже на входные коллектора современных ДВС).

Двигатель «Le Rhone 9C».

«Le Rhone» и «Gnome» первоначально соперничали, но потом объединились и с 1915 года уже работали совместно под названием «Societe des Moteurs Gnome et Rhone». Двигатель 9J был, в общем-то, уже их совместным продуктом.

Ротативный двигатель «Le Rhone 9J».

Открытый картер двигателя «Le Rhone 9J».

Интересно, что вышеупомянутая германская фирма «Motorenfabrik Oberursel» в 1913 году закупила лицензии на производство теперь уже французских ротативных двигателей «Gnome» (хотя и была родоначальницей этого брэнда, можно сказать) и чуть позже двигателей «Le Rhone». Их она выпускала под своими наименованиями: «Gnome», как «U-серия» и «Le Rhone», как «UR-серия» ( от немецкого слова Umlaufmotor, обозначающего ротативный двигатель).

Например, двигатель «Oberursel U.0» был аналогом французского «Gnome 7 Lambda» и устанавливался первоначально на самолет Fokker E.I., а двигатель «Oberursel U.III» — это копия двухрядного «Gnome 14 Lambda-Lambda».

Германский двухрядный «Oberursel U.III», копия «Gnome 14 Lambda-Lambda».

Вообще фирма «Motorenfabrik Oberursel» всю войну в довольно большом количестве производила двигатели-клоны французских моделей, которые потом ставились на самолеты, являвшиеся противниками французов и их союзников в воздушных боях. Вот такие фокусы жизни…

Истребитель Fokker E.I с двигателем «Oberursel U.0».

Среди других известных двигателестроительных фирм значится также французская фирма «Societe Clerget-Blin et Cie» (интересное для русского уха слово Blin в названии означает фамилию одного из учредителей, промышленника Эжена Блина) со своим известным движком «Clerget 9B».

Двигатель «Clerget 9B».

Двигатель «Clerget 9B» на истребителе Sopwith 1½ «Strutter».

Истребитель Sopwith 1½ «Strutter» с двигателем «Clerget 9B».

Многие двигатели производились в Великобритании по лицензиям. На этих же заводах выпускали английские двигатели разработки «Walter Owen Bentley» (того самого Бентли) «Bentley BR.1» (заменившие «Clerget 9B» на истребителях Sopwith «Camel») и «Bentley BR.2» для истребителей Sopwith 7F.1 «Snipe».

На двигателях «Bentley» в конструкции поршней впервые были применены алюминиевые сплавы. До этого на всех движках цилиндры были чугунные.

Ротативный двигатель «Bentley BR.1».

Ротативный двигатель «Bentley BR.2».

Истребитель Sopwith 7F.1″Snipe» с двигателем «Bentley BR.2».

Теперь вспомним о других особенностях ротативного двигателя, которые, так сказать, плюсов ему не прибавляют (чаще всего как раз наоборот).

Немного об управлении. Современный (стационарный, конечно) поршневой двигатель, неважно рядный он или звездообразный, управляется относительно легко. Карбюратор (либо инжектор) формирует нужный состав топливо-воздушной смеси и с помощью дроссельной заслонки пилот может регулироват подачу ее в цилиндры и, тем самым, менять обороты двигателя. Для этого по сути дела существует ручка (или педаль, как хотите) газа.

У ротативного двигателя все не так просто. Несмотря на разницу конструкций, большинство ротативных двигателей имели на цилиндрах управляемые впускные клапана, через которые и поступала топливо-воздушная смесь. Но вращение цилиндров не позволяло применять обычный карбюратор, который бы поддерживал оптимальное соотношение воздух-топливо за дроссельной заслонкой. Состав смеси, поступающей в цилиндры нужно было корректировать для достижения оптимального соотношения и устойчивой работы двигателя.

Для этого обычно существовал дополнительный воздушный клапан («bloctube») . Пилот устанавливал рычаг газа в нужное положение (чаще всего полностью открывая дроссель) и потом рычагом регулировки подачи воздуха добивался устойчивой работы двигателя на максимальных оборотах, производя так называемую тонкую регулировку. На таких оборотах обычно и проходил полет.

Из-за большой инерционности двигателя (масса цилиндров все же немаленькая), такая регулировка часто делалась «методом тыка», то есть определить нужную величину регулировки можно было только на практике, и эта практика была необходима для уверенного управления. Все зависело от конструкции двигателя и опыта пилота.

Весь полет проходил на максимальной частоте вращения движка и если ее по какой-либо причине надо было снизить, например для посадки, то действия по управлению должны были быть обратного направления. То есть пилоту нужно было прикрыть дроссель и потом опять регулировать подачу воздуха в двигатель.

Но такое «управление» было, как вы понимаете, достаточно громоздким и требующим времени, которое в полете не всегда есть, особенно на посадке. Поэтому гораздо чаще применялся метод отключения зажигания. Чаще всего это делалось через специальное устройство, позволяющее отключать зажигание полностью или в отдельных цилиндрах. То есть цилиндры без зажигания переставали работать и двигатель в целом терял мощность, что и нужно было пилоту.

Этот метод управления широко применялся на практике, но тянул за собой и кучу проблем. Топливо, вместе, кстати, с маслом, несмотря на отключение зажигания, продолжало поступать в двигатель и, не сгорев, благополучно его покидало и затем скапливалось под капотом. Так как движок очень горячий, то опасность серьезного пожара налицо. Тогдашние «легкие этажерки» горели очень легко и быстро.

Пример защитных капотов на (защита от масла двигатель «Gnome 7 Lambda») Sopwith «Tabloid».

Поэтому капоты для двигателей имели внизу вырез примерно на одну треть периметра или на худой конец серьезные дренажные отводы, чтобы вся эта гадость могла быть удалена набегающим потоком. Чаще всего, конечно, она размазывалась по фюзеляжу.

Кроме того свечи в неработающих цилиндрах могли оказаться залитыми и замасленными и повторный запуск поэтому был не гарантирован.

К 1918 году французская двигателестроительная фирма «Societe Clerget-Blin et Cie» (ротативные двигатели «Clerget 9B»), исходя из очевидной опасности использования способа снижения мощности путем отключения зажигания, в руководстве по эксплуатации своих двигателей рекомендовала следующий метод управления.

При необходимости снижения мощности двигателя пилот перекрывает подачу топлива закрытием дросселя (ручкой газа). При этом зажигание не отключается и свечи продолжают «искрить» (предохраняя себя от замасливания). Винт вращается в результате эффекта авторотации и при необходимости запуска топливный клапан просто открывается в то же положение, что и до закрытия. Двигатель запускается…

Однако, по отзывам пилотов, которые в наши дни летают на восстановленных или точных копиях самолетов того времени, все-таки самый удобный режим снижения мощности — это отключение зажигания, несмотря на всю «грязь», которую при этом извергают ротативные двигатели.

Самолеты с такими движками вообще особой чистотой не отличались. Про топливо в отключенных цилиндрах я уже сказал, но ведь было еще и масло. Дело в том, что из-за вращающегося блока цилиндров, возможность откачки топлива из картера была весьма проблематична, поэтому организовать полноценную систему смазки было нельзя.

Схема топливо- и маслопитания ротативного двигателя «Gnome 7 Omega».

Но без смазки никакой механизм работать не будет, поэтому она, конечно, существовала, но в о-о-очень упрощенном виде. Масло подавалось прямо в цилиндры, в топливо-воздушную смесь. На большинстве двигателей для этого существовал небольшой насос, подававший масло через полый (неподвижный, как уже известно) вал по специальным каналам.

В качестве смазывающего масла использовалось касторовое, самое лучшее по тем временам масло (природное растительное) для этих целей. Оно, кроме того не смешивалось с топливом, что улучшало условия смазки. Да и сгорало в цилиндрах оно только частично.

Пример замасливания (темные пятна) двигателя «Gnome 7 Omega» полусгоревшим касторовым маслом.

А удалялось оно оттуда после выполнения своих функций вместе с отработанным газами через выпускной клапан. И расход его при этом был очень даже немаленький. Средний движок, мощностью около 100 л.с. (75 кВт, 5-7 цилиндров) за час работы расходовал более двух галлонов (английских) масла. То есть около 10 литров вылетало «на ветер».

Ну что тут скажешь… Бедные механики. Масло, сгоревшее и несовсем, топливная смесь, оставшаяся после дросселирования движка, сажа… все это оседало на самолете и все это нужно было отмывать. Причем масло это отмывалось очень плохо. Из-за этого на старых снимках самолеты частенько «щеголяют» грязными пятнами на крыле и фюзеляже.

Но и летчики — люди мужественные. Ведь из движка выходила касторка. А это, как известно, очень хорошее слабительное (в аптеках раньше продавалась, не знаю, как сейчас). Конечно, двигатель был закрыт капотом и снизу, как я уже говорил, был вырез для удаления всей грязи. Но ведь кабина открытая и воздушный поток — штука не всегда управляемая. Если чистая касторка попадала на лицо и потом внутрь… Последствия предугадать… наверное было не сложно…

Следующая особенность ротативных двигателей, которую я бы тоже не назвал положительной была связана с управляемостью аэропланов, на которых стояли такие движки. Немалая масса вращающегося блока представляла собой по сути дела большой гироскоп, поэтому гироскопический эффект был неизбежен.

Пока самолет летел прямолинейно, его влияние не было сильно заметно, но стоило начать совершать какие-либо полетные эволюции, как сразу проявлялась гироскопическая прецессия. Из-за этого и вкупе с большим крутящим моментом массивного блока цилиндров при выбранном правом вращении винта самолет очень неохотно поворачивал влево и при этом задирал нос, но зато быстро делал правые развороты с большой тенденцией к опусканию носа. Такой эффект с одной стороны очень мешал (особенно молодым и неопытным пилотам), а с другой был полезен при проведении воздушных боев, в так называемых «собачьих свалках» (dogfights). Это, конечно, для опытных летчиков, которые могли с толком использовать эту особенность.

Очень характерен в этом плане был известный самолет Sopwith F.1 «Camel» Королевских ВВС, считавшийся лучшим истребителем Первой Мировой. На нем стоял ротативный двигатель «Clerget 9B» (как примечание добавлю, что в последствии также ставился и английский «Bentley BR.1» (150 л.с.)). Мощный (130 л.с.), но достаточно капризный двигатель, чувствительный к составу топлива и к маслу. Мог запросто отказать на взлете. Но именно благодаря ему и особенностям компоновки фюзеляжа (рассредоточению полезного оборудования) «Camel» был очень маневренен.

Истребитель Sopwith F.1 «Camel» с двигателем «Clerget 9B».

Маневренность эта, правда, доходила до крайности. В управлении истребитель был необычайно строг и вообще имел кое-какие неприятные особенности. Например, большое желание войти в штопор на малой скорости. Он абсолютно не подходил для обучения молодых пилотов. По некоторой статистике за время войны в боевых действиях на этом аэроплане погибло 415 пилотов, а в летных происшествиях — 385. Цифры красноречивые…

Однако опытные пилоты, хорошо его освоившие, могли извлечь большую пользу из его особенностей и делали это. Интересно, что из-за нежелания истребителя «Camel» быстро разворачиваться влево, многие пилоты предпочитали делать это, так сказать, «через правое плечо». Поворот вправо на 270° получался значительно быстрее, чем влево на 90°.

Основным и достойным противником для Sopwith F.1 «Camel» был немецкий триплан Fokker Dr.I с двигателем «Oberursel UR.II» (полный аналог французского «Le Rhone 9J»). На таком воевал Барон Манфред Альбрехт фон Рихтгофен (Manfred Albrecht Freiherr von Richthofen), знаменитый «Красный барон».

Триплан Fokker Dr.I.

Германский двигатель «Oberursel-UR-2» (копия «Le Rhone 9J»).

За время войны ротативные двигатели достигли своего полного расцвета. При имеющихся запросах армии, несмотря на свои недостатки они очень хорошо подходили для решения, так сказать, триединой задачи «мощность — вес — надежность». Особенно, что касается легких истребителей. Ведь именно на них в подавляющем большинстве такие движки стояли.

Более крупные и тяжелые самолеты продолжали летать, используя традиционные рядные движки.

Однако авиация развивалась бурными темпами. Требовалась все большая мощность двигателей. Для стационарных рядных это достигалось путем увеличения максимального количества оборотов. Возможности совершенствования в этом направлении были. Улучшались системы зажигания и газораспределения, принципы образования топливовоздушной смеси. Применялись все более совершенные материалы.

Это позволило к концу Первой Мировой войны поднять максимальную величину оборотов стационарного двигателя с 1200 до 2000 об/мин.

Однако, для ротационного двигателя этот было невозможно. Организовать правильное смесеобразование было нельзя. Все приходилось делать «на глазок», поэтому расход топлива (как и масла) был, мягко говоря, немаленьким (в том числе, кстати, из-за постоянной работы на больших оборотах).

Какие-либо внешние регулировочные работы на двигателе, пока он находится в запущенном состоянии само собой были невозможны.

Повысить частоту вращения тоже не получалось, потому что сопротивление воздуха быстро вращающемуся блоку цилиндров было достаточно большим. Более того, при увеличении скорости вращения, сопротивление росло еще быстрее. Ведь, как известно, скоростной напор пропорционален квадрату скорости. То есть если скорость просто растет, то сопротивление растет в квадрате (примерно).

При попытках на некоторых моделях двигателей начала войны поднять обороты с 1200 об/мин до 1400 об/мин сопротивление поднималось на 38%. То есть получалось, что возросшая мощность двигателя больше тратилась на преодоление сопротивления, чем на создание полезной тяги воздушного винта.

Немецкой фирмой Siemens AG была сделана попытка обойти эту проблему с другой стороны. Был выполнен 11-цилиндровый двигатель так называемой биротативной схемы (наименование Siemens-Halske Sh.III). В нем блок цилиндров вращался в одну сторону с частотой 900 об/мин., а вал (ранее неподвижный) в другую с той же частотой. Суммарная относительная частота составила 1800 об/мин. Это позволило достичь мощности в 170 л.с.

Биротативный двигатель «Siemens-Halske Sh.III».

Истребитель «Siemens-Schuckert D.IV».

Истребитель «Siemens-Schuckert D.IV» в берлинском авиамузее.

Этот двигатель имел меньшее сопротивление воздуху при вращении и меньший крутящий момент, мешающий управлению. Устанавливался на истребителе «Siemens-Schuckert D.IV» , который по мнению многих специалистов стал одним из лучших маневренных истребителей времен войны. Однако производиться начал поздно и сделан был в небольшом количестве экземпляров. Существующее положение Siemens-Halske Sh.III не поправил и не смог опять поднять ротативные двигатели на должную высоту.

Здесь следует упомянуть о работах русского инженера Анатолия Георгиевича Уфимцева. А.Г.Уфимцев работы по биротативным авиационным двигателям начал ещё в 1909 году. Им был спроектирован четырехцилиндровый биротативный двигатель с воспламенением смеси при высокой степени сжатия в цилиндрах, диаметр которых составлял 90 мм, ход поршня — 120 мм. На это изобретение А.Г.Уфимцев получил патент. Специального станка для замера мощности биротативного двигателя у конструктора не было. По его расчетам мощность двигателя массой 40 кг могла достигать 35-40 л.с. Для запуска двигателя предполагалось использовать сжатый воздух от баллона на борту самолета. В Главном инженерном управлении дали отрицательное заключение на этот проект, считая невозможным запуск двигателя сжатым воздухом (в дальнейшем практика развития авиации подтвердила целесообразность воздушного запуска).

Тем не менее А.Г.Уфимцев не оставил намерения осуществить свою идею. Четырехцилиндровый двигатель с самовоспламенением не удовлетворял автора и в новом проекте была применена электрическая система зажигания топливовоздушной смеси при меньшей степени сжатия.
Получив небольшой кредит от частных лиц, заложив дом и используя все наличные средства, изобретатель построил шестицилиндровый биротативный двигатель. При этом диаметр цилиндра равнялся 80 мм, ход поршня — 110 мм, частота вращения — 1000 об/мин. Масса двигателя — 50 кг, расчетная мощность — 40 л.с. Этот двигатель А.Г.Уфимцев установил на самолете собственной конструкции «Сфероплан-2», который был построен в 1910 году. Во время испытаний самолет не взлетел из-за передней центровки.

Аппарат А.Г.Уфимцева «Сфероплан-II». 1910 г.

В 1912 году А.Г.Уфимцев спроектировал новый шестицилиндровый двухтактный биротативный двигатель с улучшенной продувкой цилиндров. Были устранены недостатки предыдущих двигателей, существенно изменены параметры и конструкция основных узлов, расчетная мощность — в пределах 65-70 л.с. при массе 58 кг. Двигатель был построен на Брянском паровозостроительном заводе и получил наименование АДУ-4. Его испытание, доводка не были завершены, завод отказался от производства этого двигателя. В настоящее время двигатель АДУ-4 экспонируется в музее ВВС.

А.Г.Уфимцев у своего первого биротативного двигателя.

Двигатель АДУ-4 в музее ВВС Монино.

Недостатков у всех видов ротативных двигателей, как видите, хватало. Ко всему прочему могу еще добавить, что движки эти были достаточно дороги. Ведь из-за большой быстро вращающейся массы все детали двигателя должны были быть хорошо отбалансированы и четко подогнаны. Плюс сами материалы были недешевы. Это приводило к тому, что, например, двигатель Monosoupape по ценам 1916 года стоил порядка 4000$ (что в переводе на курс года 2000-го составляет примерно 65000$). Это при том, что в движке-то, вобщем-то, по нынешним понятиям, ничего особенного-то нет.

Ко всему прочему моторесурс всех таких двигателей был невысок (вплоть до 10-ти часов между ремонтами) и менять их приходилось часто, несмотря на высокую стоимость.

Все эти недостатки копились и в конце концов чаша оказалась переполнена. Ротативный двигатель широко использовался и совершенствовался (по мере возможности) вплоть до конца войны. Самолеты с такими движками некоторое время использовались во время гражданской войны в России и иностранной интервенции. Но в целом их популярность быстро пошла на спад.

Совершенствование науки и производства привели к тому, что на сцену уверенно вышел последователь ротативного двигателя — радиальный или звездообразный двигатель с воздушным охлаждением, который не сходит с нее и по сей день, работая, между прочим, в содружестве с рядным поршневым авиационным двигателем с жидкостным охлаждением.

Ротативный двигатель, оставив яркий след в истории авиации, занимает теперь почетное место в музеях и на исторических выставках.

В заключении ролик — запуск восстановленного двигателя «Gnome» 1918 года выпуска:

Мотоцикл Gnome et Rhone R-1

В 1941-1942 гг. мотоцикл оснащался 98- см³ двигателем воздушного охлаждения, а с 1943 г. его заменили 125-см³. Мотоцикл имел трубчатую раму, цепной привод и паралелограмную вилку. ТТХ мотоцикла: масса – 61 кг; двигатель – одноцилиндровый, двухтактный; объем двигателя – 98/123,5 см³; мощность двигателя – 2,8/6 л.с; расход топлива – 2,5 л/100 км; коробка передач – 3-скоростная; максимальная скорость – 60 км/ч.

Мотоцикл Gnome et Rhone R2

Мотоцикл являлся результатом модернизации модели «R1» и выпускался с 1944 г. ТТХ мотоцикла: масса – 54 кг; двигатель – одноцилиндровый, двухтактный; объем двигателя – 125 см³; мощность двигателя – 6 л.с; емкость бензобака – 9 л; расход топлива – 2,5 л/100 км; коробка передач – 3-скоростная; максимальная скорость – 60 км/ч; тормоза – барабанные.

Мотоцикл Gnome Rhone 750-XA с коляской

Мотоцикл Gnome Rhone 750-XA

Мотоцикл Gnome Rhone 800AХ

Тяжелый мотоцикл со штампованной рамой выпускался фирмой «Gnome et Rhône» в 1935-1939 гг., как с коляской, так и без нее. Всего было выпущено около 500 машин. ТТХ мотоцикла: масса – 180 кг без коляски и 450 кг с коляской; двигатель – двухцилиндровый, объем двигателя – 723,8 см³; мощность двигателя – 28 л.с; коробка передач – 4-ступенчатая; максимальная скорость – 90 км/ч.

Мотоцикл Gnome Et Rhone 800 AХ с коляской

Мотоцикл Gnome-Rhone 800 AX-2

Серия армейских мотоциклов выпускался компанией «Societe des Moteurs Gnome» в 1936-1940 гг. Мотоцикл имел штампованную стальную раму, параллелограммную переднюю вилку, постоянный привод на колесо коляски. Кроме стандартной версии, во французской армии служили специальные боевые коляски – санитарные, химзащиты и т. д. Трофейные мотоциклы использовались Вермахтом. Всего было выпущено 2,7 тысячи машин. ТТХ мотоцикла: длина – 2,7 м; ширина – 1,9 м; высота – 1 м; колесная база – 1,5 м; клиренс – 180 мм; масса – 316 кг; грузоподъемность коляски – 420 кг; тип двигателя – нижнеклпанный опозитный; объем двигателя – 804 см³; мощность двигателя – 18,5 л.с; коробка передач – 4-скоростная с задним ходом; емкость бензобака – 15 л; запас хода – 180 км; максимальная скорость – 85 км; тормоза – барабанные.

Мотоцикл Gnome-Rhone CV-2
Мотоцикл Gnome-Rhone CV-2 с коляской

Мотоцикл выпускался в 1932-1939 гг., как с коляской, так и без нее. ТТХ мотоцикла: масса – 160 кг; двигатель – двухцилиндровый, четырехтактный; объем двигателя – 500 см³; коробка передач – 4-скоростная; емкость бензобака – 14 л; максимальная скорость – 110 км/ч; тормоза – барабанные.

Мотоцикл Gnome-Rhone Junior

Двухместный мотоцикл выпускался в 1933-1938 гг. Он имел штампованную раму, параллелограмную переднюю вилку и цепную передачу. ТТХ мотоцикла: длина – 2 м; колесная база – 1,3 м; масса – 120 кг; двигатель – одноцилиндровый, четырехтактный; объем двигателя – 247 см³; мощность двигателя – 8 л.с; коробка передач – 3-скоростная; емкость бензобака – 9 л; расход топлива – 3,5 л/100 км; максимальная скорость – 80 км/ч.

Мотоцикл Gnome-Rhone D-5A
Мотоцикл Gnome-Rhone D-5A с коляской
Мотоцикл Gnome-Rhone D5С

Мотоцикл «D5» выпускался компанией «Societe des Moteurs Gnome» в 1936-1940 гг., как с коляской, так и без нее. Известана модификация мотоцикла под обозначением «Gnome-Rhone D5С», которая выпускалась в 1938-1939 гг. Трофейные мотоциклы использовались Вермахтом. В армию было поставлено 400 машин. ТТХ мотоцикла: длина – 2,3 м; ширина – 0,8 м; высота – 1 м; масса – 185 кг; колесная база – 1,4 м; двигатель – одноцилиндровый, четырехтактный; объем двигатеоя — 500 см³; мощность двигателя – 9,5 л.с; емкость бензобака – 13 л; коробка передач — 4-скоростная; максимальная скорость – 90 км/ч; тормоза — барабанные.

Мотоцикл Magnat-Debon 225

Мотоцикл выпускался с 1933 г. Он имел одноцилиндровый четырехтактный двигатель объемом 225 см³.

Мотоцикл Magnat-Debon 250

Мотоцикл выпускался с 1936 г. ТТХ мотоцикла: длина – 2 м; ширина – 0,8 м; объем двигателя — 250 см³.

Мотоцикл Magnat-Debon 350

Мотоцикл выпускался с 1939 г. Двигатель объемом 350 см³ и коробка передач изготавливались компанией «Terrot».

Мотоцикл Monet-Goyon L-5А
Мотоцикл Monet-Goyon L-5А1 с коляской

Мотоцикл выпускался компанией «Monet-Goyon» с 1935 г., как сколяской, так и без нее в трех модификациях: «L-5A» (базовая модель), «L-5A1» (модель с коляской) и «L-5A2» (улучшенная версия с коляской). Он имел одинарную трубчатую раму, которую внизу «замыкал» картер двигателя, параллелограмную вилку с трубчатыми перьями, ножное переключение передач. Всего было выпущено 3,2 тысячи машин. ТТХ мотоцикла: масса – 142 кг, с коляской – 233 кг; двигатель — одноцилиндровый, четырёхтактный, нижнеклапанный; объем двигателя – 486 см³; мощность двигателя – 12,5 л.с; емкость бензобака – 15 л; коробка передач – 4-ступенчатая; максимальная скорость – 75 км/ч.

Мотоцикл Motobecane 350 (R-4С)

Мотоцикл выпускался в 1934-1938 гг. Трофейные мотоциклы использовались Вермахтом. ТТХ мотоцикла: масса 120 кг; двигатель – одноцилиндровый четыректактный; объем двигателя — 350 см³; максимальаня скорость – 95 км/ч.

Мотоцикл Motobecane B-1V2

Мотоцикл выпускался с 1938 г. Трофейные машины использовались войсками Вермахта.

Мопед Peugeot P-53

Мопед выпускался компанией «Peugeot» с 1939 г. ТТХ мопеда: масса – 35 кг; двигатель – одноцилиндровый, твухтактный; объем двигателя — 98 см³; коробка передач – 3-скоростная.

Мотоцикл Peugeot P-107

Двухместный мотоцикл выпусклся в 1927-1936 гг. В армию было поставлено около 1 тысячи машин. ТТХ мотоцикла: длина – 2,4 м; ширина – 0,8 м; колесная база – 1,4 м; масса – 125 кг; двигатель – одноцилиндровый, четырехтактный; объем двигателя – 346 см³; мощность двигателя – 6,5 л.с; емкость бензобака – 11 л.; коробка передач – 3-скоростная; максимальная скопрость – 85 км/ч.

Мотоцикл Peugeot P-108

Мотоцикл выпускался компанией «Peugeot» в 1928-1939 гг. Он имел ручное переключение передач. Трофейные машины использовались войсками Вермахта. ТТХ мотоцикла: масса – 110 кг; двигатель – одноцилиндровый; объем двигателя – 248 см³; мощность двигателя – 5 л.с; емкость бензобака – 10 л; коробка передач – 3-ступенчатая; максимальная скорость – 80 км/ч; тормоза – барабанные.

Мотоцикл Peugeot P-112

Мотоцикл выпускался с 1934 г. На протяжении 1939-1940 гг. в армию было поставлено 750 машин. ТТХ мотоцикла: длина – 2,1 м; ширина – 0,8 м; высота – 1 м; колесная база – 1,4 м; масса – 140 кг; двигатель – одноцилиндровый, четырехтактный; объем двигателя – 346 см³; мощность двигателя – 8,5 л.с; коробка передач – 3-скоростная; максимальная скорость – 85 км/ч.

Мотоцикл Peugeot P-135

Мотоцикл выпускался с 1937 г. по заказу армии. Всего было построено более 2 тысяч машин. ТТХ мотоцикла: масса – 145 кг; двигатель – одноцилиндровый; объем двигателя в 350 см³; коробка передач – 3–скоростная; максимальная скорость – 120 км/ч; тормоза – барабанные.

Мотоцикл Peugeot 515-GT

Мотоцикл выпускался с 1934 г. ТТХ мотоцикла: масса – 155 кг; объем двигателя – 494,7 см³; мощность двигателя – 22 л.с; коробка передач – 4-скоротсная; максимальная скорость – 125 км/ч; тормоза – барабанные.

Мотоцикл Peugeot 515-SP с коляской

Мотоцикл выпускался с 1937 г. ТТХ мотоцикла: масса — 135 кг; двигатель – одноцилиндровый, четырехтактный, верхнеклапанный; объем двигателя — 495 см³; мощность двигателя – 22 л.с; максимальаня скорсоть – 118 км/ч.

Мотоцикл Renе Gillet 750

Тяжелый мотоцикл выпускался фирмой «Renе Gillet» в 1928-1940 гг., как в вариантах соло, так и с коляской. Армейская версия именовалась «Type G1». Мотоцикл имел одиночную трубчатую стальную раму. Передняя подвеска представляла собой комбинацию жесткой вилки с подвижными рычагами. ТТХ мотоцикла: длина – 2,3 м; ширина – 1,6 м; высота – 1 м; двигатель — двухцилиндровый, V-образный, нижнеклапанный; объем двигателя – 750 см³; мощность вдигателя – 14 л.с; коробка передач – 3-ступенчатая; тормоза — колодочные с внутренним расположением колодок на обоих колесах.

Мотоцикл Renе Gillet 1000 соло
Мотоцикл Renе Gillet 1000 с коляской

Мотоцикл выпускался фирмой «René Gillet» с 1922 г. Он имел сварную трубчатую раму, передняя вилку с коротким ведущим рычагом. Трофейные мотоциклы использовалист Вермахтом. ТТХ мотоцикла: длина – 2,6 м; ширина – 1,6 м; высота – 1.1 м; колесная база – 1,5 м; масса – 300 кг; двухцилиндровый, нижнеклапанный, V-образный; объем двигателя – 982 см³; мощность двигателя – 20 л.с; коробка передач – 4-ступенчатая; емкость бензобака – 13 л; максимальная скорсть – 85 км/ч; запас хода – 192 км; тормоза – барабанные.

Мотоцикл SEVITAME

Мотоцикл выпускался с 1939 г. по заказу вооруженных сил Франции. Для транспортировки рама мотоцикла разбиралась на три части. Топливный бак использовался в качестве заднего крыла. Всего было выпущено 10 машин. ТТХ мотоцикла: масса – 120 кг; двигатель – двухцилиндровый, двухтактный; объем двигателя – 350 см³; мощность двигателя – 20 л.с; емкость бензобака – 18 л; коробка передач – 4-скоростная; максимальная скорость – 85 км/ч; запас хода – 500 км.

Мотоцикл Terrot 350 HSTA с коляской

Армейский мотоцикл выпускался компанией «Terrot» в 1934-1940 гг. на базе гражданской модели «Terrot 350 HST». Строились как модели с коляской, так и без нее. Он имел трубчастую стальную раму, трапециевидную подвеску и цепную передачу. Трофейные мотоциклы использовались Германией. В армию было поставлено не менее 480 машин.

Мотоцикл Terrot 350 HSTA

ТТХ мотоцикла: длина – 2,1 м; ширина – 0.8 м; колесная база – 1,3 м; масса – 136 кг; двигатель — одноцилиндровый; объем двигателя – 346 см³; мощность двигателя – 9,5 л.с; коробка передач – 3-скоростная; емкость бензобака – 11 л; расход топлива – 3л/100 км; максимальная скорость – 90 км/ч.

Мотоцикл Terrot HDA

Армейский мотоцикл выпускался компанией «Terrot» в 1934-1940 гг. на базе гражданской модели «Terrot HD». Он имел трубчастую стальную раму, трапециевидную подвеску и цепную передачу. Трофейные мотоциклы использовались Германией. ТТХ мотоцикла: масса – 116 кг; двигатель – одноцилиндровый, четырехтактный; объем двигателя – 346 см³; мощность двигателя – 9,5 л.с; коробка передач – 3-скоростная; максимальная скорость – 100 км/ч.

Мотоцикл Terrot RATT

Мотоцикл выпускался компанией «Terrot» в 1934-1939 гг. Трофейные мотоциклы использовались Вермахтом. ТТХ мотоцикла: двигатель – одноцилиндровый, четырехтактный; объем двигателя – 499 см³; мощность двигателя – 11,6 л.с.

Мотоцикл Terrot RD

Мотоцикл выпускался с 1936 г. ТТХ мотоцикла: масса — 158 кг; двигатель – одноцилиндровый, четырехтактный; объем двигателя – 499 см³; максимальная скорость – 105 км/ч.

Мотоцикл Terrot RDA с коляской

Мотоцикл выпускался компанией «Terrot» в 1939-1940 гг. как с коляской, так и без нее. Известна модификация «Terrot RDtt», которая имела внедорожное приспособление ввиде нескольких роликов, закрепленных на защите картера двигателя. Всего было поставлено в армию 2,9 тысячи машин.

Мотоцикл Terrot RDA

Трофейные мотоциклы использовались Вермахтом. ТТХ мотоцикла: масса – 300 кг; двигатель – одноцилиндровый. четырехтактный; объем двигателя – 498 см³; мощность двигателя – 11,5 л.с; максимальная скорость – 85 км/ч.

Мотоцикл Terrot RCMA

Мотоцикл выпускался компанией «Terrot» в 1940-1945 гг., как с коляской, так и без нее. ТТХ мотоцикла: масса – 180 кг; двигатель – одноцилиндровый; объем двигателя – 499 см³; мощность двигателя – 14 л.с.

Мотоцикл Terrot RSSE

Мотоцикл выпускался компанией «Terrot» в 1937-1939 гг. ТТХ мотоцикла: масса – 160 кг; двигатель – одноцилиндровый, верхнеклапанный; объём двигателя — 499 см³; мощность двигателя — 21л.с; коробка передач – 4-ступенчатая; емкость бензобака – 15 л; максимальная скорость – 130 км/ч.

Мотоцикл Terrot VATT -750

Мотоцикл выпускался компанией «Terrot» в 1936-1940 гг. на базе гражданской модели «VA». Разница между мотоциклами заключалась в комплектации модели VATT шинами повышенной проходимости, приподнятой выхлопной трубой, маскировочным освещением и прочими стандартными военными опциями. Для повышения надежности зажигание батарейного типа было заменено на магнето. Также имелось специальное внедорожное приспособление, которое состояло из нескольких роликов, закрепленных на защите картера силового агрегата. Всего было выпущено 974 машины. ТТХ мотоцикла: длина – 2,2 м; ширина – 0,9 м; высота – 1,1 м; колесная база – 1,5 м; клиренс – 200 мм; масса – 130 кг; двигатель — двухцилиндровый V-образный; объем двигателя — 748 см³; мощность двигателя – 18,2 л.с; коробка передач – 4-ступенчатая; емкость бензобака – 16 л; максимальная скорсоть – 90 км/ч; запас хода – 200 км; тормоза — передние и задние с разжимными колодками, прижимающимися к внутренней поверхности барабана.

Ротативный двигатель. Чумазый вояка…

Сегодня поговорим о двигателе, эра расцвета которого пришлась на тот период времени, когда авиация еще не вышла из состояния «летающих этажерок», но когда эти самые этажерки уже чувствовали себя в воздухе достаточно уверенно.


Истребитель Sopwith Camel F.1 с двигателем Clerget 9B.
Основные принципы самолето- и двигателестроения быстро принимали устойчивые очертания. Появлялось все больше моделей двигателей для аэропланов, а вместе с ними как новые победы, так и новые проблемы в двигателестроении. Конструкторы и инженеры стремились (как это, вобщем-то, происходит и сейчас 🙂 ) максимально облегчить двигатели и при этом сохранить или даже увеличить их тяговую эффективность.
На этой волне и появился ротативный двигатель для тогдашних аэропланов. Почему именно для аэропланов? Да потому что сам по себе этот тип двигателя был разработан даже значительно раньше первого полета братьев Райт.
Однако обо всем по порядку. Что из себя представляет ротативный двигатель…. На английском rotary engine (что, кстати, на мой взгляд странно, потому что этим же словом обозначается роторный двигатель (двигатель Ванкеля)). Это двигатель внутреннего сгорания, в котором цилиндры с поршнями ( их нечетное количество) расположены радиально в виде звезды, обычно четырехтактный.
Рабочее топливо — бензин, воспламенение происходит от свечей зажигания.
По внешнему виду он очень похож на появившийся практически одновременно с ним и хорошо нам сегодня известный радиальный (звездообразный) поршневой двигатель. Но это только в неработающем состоянии. При запуске ротативный двигатель на неосведомленного о нем человека производит сильное впечатление.

Работа ротативного двигателя.
Происходит это потому, что уж очень необычно, на первый взгляд, выглядит его работа. Ведь вместе с винтом вращается и весь блок цилиндров, то есть, по сути дела весь двигатель. А вал, на котором происходит это вращение закреплен неподвижно. Однако в механическом плане ничего необычного тут нет. Просто дело привычки 🙂 .
Топливо-воздушная смесь из-за вращения цилиндров не может быть подведена к ним обычным порядком, поэтому попадает туда из картера, куда подводится через полый неподвижный вал от карбюратора (или устройства его заменяющего).
Впервые в истории патент на ротативный двигатель получил французский изобретатель Félix Millet в 1888 году. Тогда этот двигатель поставили на мотоцикл и показали его на всемирной парижской выставке в 1889 году.

Ротативный двигатель Félix Millet на мотоцикле.
Позже двигатели Félix Millet ставились на автомобили, один из которых принял участие в первой в мире автомобильной гонке Paris–Bordeaux–Paris в 1895 году, а с 1900 года эти двигатели ставили на автомобили французской фирмы Darracq.
В дальнейшем инженеры-изобретатели стали обращать внимание на ротативный двигатель уже с точки зрения применения его в авиации.
Первым в этом плане был бывший ньюйоркский часовщик Stephen Balzer, создавший свой ротативный двигатель в 1890 году и ставший автором (совместно с инженером Charles M. Manly) первого в истории двигателя, разработанного конкретно для аэроплана, известного под названием Manly-Balzer engine.
Практически одновременно с ним работал американский инженер Adams Farwell, строивший автомобили с ротативными двигателями с 1901 года.

Открытый картер двигателя Le Rhône 9J.
По некоторым сведениям принципы конструкции его двигателей были взяты за основу производителями знаменитых впоследствии двигателей «Гном».
Что же так привлекало инженеров в ротативном двигателе? Что в нем такого полезного для авиации?
Есть две основные особенности, которые и являются его главными положительными качествами. Первая — это самый малый (по тому времени) вес по сравнению с двигателями той же мощности. Дело в том, что частоты вращения тогдашних двигателей были невысокие и для получения необходимой мощности (в среднем тогда порядка 100 л.с. (75 кВт)) циклы воспламенения топливовоздушной смеси давали о себе знать весьма ощутимыми толчками.
Чтобы этого избежать двигатели снабжались массивными маховиками, что, естественно, влекло за собой утяжеление конструкции. Но для ротативного двигателя маховик был не нужен, потому, что вращался сам двигатель, имеющий достаточную массу для стабилизации хода.
Такие двигатели отличались плавностью и равномерностью хода. Зажигание производилось последовательно в каждом цилиндре через один по кругу.
Второй особенностью было хорошее охлаждение. Металлургическая промышленность в те времена была не настолько развита, как сейчас и качество сплавов (в плане термостойкости) было не слишком высоким. Поэтому требовалось хорошее охлаждение.
Скорости полета самолетов были не высокие, поэтому простое охлаждение набегающим потоком стационарного движка было недостаточным. А ротативный двигатель здесь находился в более выгодном положении, потому что сам вращался с достаточной для эффективного охлаждения скоростью и цилиндры хорошо обдувались воздухом. При этом они могли быть как гладкими, так и оребренными. Охлаждение было достаточно эффективным даже при работе двигателя на земле.
Теперь отвлечемся на пару полезных роликов о работе ротативного двигателя. Первый – это моделирование его работы на компьютере. Во втором показана работа “внутренностей” двигателя Le Rhône.

Расцвет ротативных двигателей пришелся на первую мировую войну. В то время авиация уже достаточно серьезно участвовала в боевых действиях и воздушные бои не были редкостью. Самолеты и двигатели для них производились всеми крупными участниками войны.
Из двигателестроительных одной из самых известных была французская фирма Société des Moteurs Gnome, в свое время занимавшаяся производством двигателей внутреннего сгорания для промышленного производства. В 1900 году она купила лицензию на производство маленького одноцилиндрового стационарного двигателя (мощность 4 л.с.) Gnom у немецой фирмы Motorenfabrik Oberursel. Это движок продавался во Франции под французским наименованием Gnome и при этом настолько успешно, что наименование это было использовано в названии фирмы.

Ротативный двигатель Gnome 7 Omega.
В дальнейшем на базе Гнома был разработан ротативный двигатель Gnome Omega, имевший немалое количество модификаций и устанавливавшийся на самые различные самолеты. Известны так же другие массово производившиеся двигатели этой фирмы. Например, Gnome 7 Lambda – семицилиндровый, мощностью 80 л.с. и его продолжение Gnome 14 Lambda-Lambda (160 л.с.), двухрядный ротативный двигатель с 14-ю цилиндрами.


Двигатель Gnome Monosoupape.
Широко известен двигатель Gnome Monosoupape (один клапан), начавший выпускаться в 1913 году и считавшийся одним из лучших двигателей в начальный период войны. Этот «лучший двигатель» 🙂 имел всего один клапан, использовавшийся и для выхлопа и для забора воздуха. Для поступления топлива в цилиндр из картера, в юбке цилиндра был сделан ряд специальных отверстий. Двигатель был бескарбюраторный и из-за упрощенной системы управления был легче и потреблял, к тому же меньше масла.

Подвод топлива в цилиндр Gnome Monosoupape. Crank Case — картер, Ports — подводящие отверстия.
Управления у него не было практически никакого. Был только топливный кран, подававший бензин через специальную форсунку (или распылитель) в полый неподвижный вал и далее в картер. Этим краном можно было пытаться обогащать или обеднять топливо-воздушную смесь в очень узком диапазоне, от чего было мало толку.
Пытались использовать с целью управления изменение фаз газораспределения, но быстро от этого отказались, потому что начали гореть клапана. В итоге движок постоянно работал на максимальных оборотах (как, впрочем и все ротативные двигатели 🙂 ) и управлялся только отключением зажигания (об этом чуть ниже 🙂 ).
Другой известной французской фирмой, производившей ротативный двигатели была фирма Société des Moteurs Le Rhône, начавшая свою работу с 1910 года. Одними из самых известных ее двигателей были Le Rhône 9C (мощность 80 л.с.) и Le Rhône 9J (110 л.с.). Характерной их особенностью было наличие специальных трубопроводов от картера к цилиндрам для подвода топливо-воздушной смеси (немного похоже на входные коллектора современных ДВС).

Двигатель Le Rhone 9C.

Ротативный двигатель Le Rhone 9J.
Le Rhône и Gnome первоначально соперничали, но потом объединились и с 1915 года уже работали совместно под названием Société des Moteurs Gnome et Rhône. Двигатель 9J был, вобщем-то, уже их совместным продуктом.
Интересно, что вышеупомянутая германская фирма Motorenfabrik Oberursel в 1913 году закупила лицензии на производство теперь уже французских ротативных двигателей Gnome (хотя и была родоначальницей этого брэнда, можно сказать 🙂 ) и чуть позже двигателей Le Rhône. Их она выпускала под своими наименованиями: Gnome, как U-серия и Le Rhône, как UR-серия ( от немецкого слова Umlaufmotor, обозначающего ротативный двигатель).
Например, двигатель Oberursel U.0 был аналогом французского Gnome 7 Lambda и устанавливался первоначально на самолет Fokker E.I., а двигатель Oberursel U.III – это копия двухрядного Gnome 14 Lambda-Lambda.
Истребитель Fokker E.I с двигателем Oberursel U.0 .

Германский двухрядный Oberursel U.III, копия Gnome 14 Lambda-Lambda.
Вообще фирма Motorenfabrik Oberursel всю войну в довольно большом количестве производила двигатели-клоны французских моделей, которые потом ставились на самолеты, являвшиеся противниками французов и их союзников в воздушных боях. Вот такие фокусы жизни 🙂 …
Среди других известных двигателестроительных фирм значится также французская фирма Société Clerget-Blin et Cie ( интересное для русского уха слово Blin в названии означает фамилию одного из учредителей, промышленника Эжена Блина 🙂 ) со своим известным движком Clerget 9B.
Двигатель Clerget 9B.
Двигатель Clerget 9B на истребителе Sopwith 1½ Strutter.
Истребитель Sopwith 1 1/2 Strutter с двигателем Clerget 9B.
Многие двигатели производились в Великобритании по лицензиям. На этих же заводах выпускали английские двигатели разработки Walter Owen Bentley (того самого Бентли) Bentley BR.1 (заменившие Clerget 9B на истребителях Sopwith Camel) и Bentley BR.2 для истребителей Sopwith 7F.1 Snipe.
На двигателях Bentley в конструкции поршней впервые были применены алюминиевые сплавы. До этого на всех движках цилиндры были чугунные.
Ротативный двигатель Bentley BR1.
Ротативный двигатель Bentley BR2.
Истребитель Sopwith 7F.1 Snipe с двигателем Bentley BR.2
Теперь вспомним о других особенностях ротативного двигателя, которые, так сказать, плюсов ему не прибавляют 🙂 (чаще всего как раз наоборот).
Немного об управлении. Современный (стационарный, конечно 🙂 ) поршневой двигатель, неважно рядный он или звездообразный, управляется относительно легко. Карбюратор (либо инжектор) формирует нужный состав топливо-воздушной смеси и с помощью дроссельной заслонки пилот может регулировать подачу ее в цилиндры и, тем самым, менять обороты двигателя. Для этого по сути дела существует ручка (или педаль, как хотите 🙂 ) газа.
У ротативного двигателя все не так просто 🙂 . Несмотря на разницу конструкций, большинство ротативных двигателей имели на цилиндрах управляемые впускные клапана, через которые и поступала топливо-воздушная смесь. Но вращение цилиндров не позволяло применять обычный карбюратор, который бы поддерживал оптимальное соотношение воздух-топливо за дроссельной заслонкой. Состав смеси, поступающей в цилиндры нужно было корректировать для достижения оптимального соотношения и устойчивой работы двигателя.
Для этого обычно существовал дополнительный воздушный клапан (“bloctube”) . Пилот устанавливал рычаг газа в нужное положение (чаще всего полностью открывая дроссель) и потом рычагом регулировки подачи воздуха добивался устойчивой работы двигателя на максимальных оборотах, производя так называемую тонкую регулировку. На таких оборотах обычно и проходил полет.
Из-за большой инерционности двигателя (масса цилиндров все же немаленькая 🙂 ), такая регулировка часто делалась «методом тыка», то есть определить нужную величину регулировки можно было только на практике, и эта практика была необходима для уверенного управления. Все зависело от конструкции двигателя и опыта пилота.
Весь полет проходил на максимальной частоте вращения движка и если ее по какой-либо причине надо было снизить, например для посадки, то действия по управлению должны были быть обратного направления. То есть пилоту нужно было прикрыть дроссель и потом опять регулировать подачу воздуха в двигатель.
Но такое «управление» было, как вы понимаете, достаточно громоздким и требующим времени, которое в полете не всегда есть, особенно на посадке. Поэтому гораздо чаще применялся метод отключения зажигания. Чаще всего это делалось через специальное устройство, позволяющее отключать зажигание полностью или в отдельных цилиндрах. То есть цилиндры без зажигания переставали работать и двигатель в целом терял мощность, что и нужно было пилоту.
Этот метод управления широко применялся на практике, но тянул за собой и кучу проблем. Топливо, вместе, кстати, с маслом, несмотря на отключение зажигания, продолжало поступать в двигатель и, несгорев, благополучно его покидало и затем скапливалось под капотом. Так как движок очень горячий, то опасность серьезного пожара налицо. Тогдашние «легкие этажерки» горели очень легко и быстро 🙂 .
Пример защитных капотов на двигателе (защита от масла двигатель Gnome 7 Lambda ) на самолете Sopwith Tabloid.
Поэтому капоты для двигателей имели внизу вырез примерно на одну треть периметра или на худой конец серьезные дренажные отводы, чтобы вся эта гадость могла быть удалена набегающим потоком. Чаще всего, конечно, она размазывалась по фюзеляжу.
Кроме того свечи в неработающих цилиндрах могли оказаться залитыми и замасленными и повторный запуск поэтому был не гарантирован.
К 1918 году французская двигателестроительная фирма Société Clerget-Blin et Cie (ротативные двигатели Clerget 9B), исходя из очевидной опасности использования способа снижения мощности путем отключения зажигания, в руководстве по эксплуатации своих двигателей рекомендовала следующий метод управления.
При необходимости снижения мощности двигателя пилот перекрывает подачу топлива закрытием дросселя (ручкой газа). При этом зажигание не отключается, и свечи продолжают «искрить» (предохраняя себя от замасливания). Винт вращается в результате эффекта авторотации, и при необходимости запуска топливный клапан просто открывается в то же положение, что и до закрытия. Двигатель запускается…
Однако, по отзывам пилотов, которые в наши дни летают на восстановленных или точных копиях самолетов того времени, все-таки самый удобный режим снижения мощности – это отключение зажигания, несмотря на всю «грязь», которую при этом извергают ротативные двигатели 🙂 .
Самолеты с такими движками вообще особой чистотой не отличались. Про топливо в отключенных цилиндрах я уже сказал, но ведь было еще и масло. Дело в том, что из-за вращающегося блока цилиндров, возможность откачки топлива из картера была весьма проблематична, поэтому организовать полноценную систему смазки было нельзя.
Схема топливо- и маслопитания ротативного двигателя Gnome 7 Omega.
Но без смазки никакой механизм работать не будет, поэтому она, конечно, существовала, но в о-о-очень упрощенном виде. Масло подавалось прямо в цилиндры, в топливо-воздушную смесь.На большинстве двигателей для этого существовал небольшой насос, подававший масло через полый (неподвижный, как уже известно 🙂 ) вал по специальным каналам.
В качестве смазывающего масла использовалось касторовое, самое лучшее по тем временам масло ( природное растительное) для этих целей. Оно, кроме того не смешивалось с топливом, что улучшало условия смазки. Да и сгорало в цилиндрах оно только частично.
Пример замасливания (темные пятна) двигателя Gnome 7 Omega полусгоревшим касторовым маслом.
А удалялось оно оттуда после выполнения своих функций вместе с отработанным газами через выпускной клапан. И расход его при этом был очень даже немаленький. Средний движок, мощностью около 100 л.с. (≈75 кВт, 5-7 цилиндров) за час работы расходовал более двух галлонов (английских) масла. То есть около 10 литров вылетало «на ветер».

Ну что тут скажешь… Бедные механики 🙂 . Масло, сгоревшее и не совсем, топливная смесь, оставшаяся после дросселирования движка, сажа… все это оседало на самолете, и все это нужно было отмывать. Причем масло это отмывалось очень плохо. Из-за этого на старых снимках самолеты частенько «щеголяют» грязными пятнами на крыле и фюзеляже.
Но и летчики – люди мужественные 🙂 . Ведь из движка выходила касторка. А это, как известно, очень хорошее слабительное (в аптеках раньше продавалась, не знаю, как сейчас). Конечно, двигатель был закрыт капотом, и снизу, как я уже говорил, был вырез для удаления всей грязи. Но ведь кабина открытая и воздушный поток – штука не всегда управляемая. Если чистая касторка попадала на лицо и потом внутрь… Последствия предугадать…. наверное было не сложно 🙂 …
Следующая особенность ротативных двигателей, которую я бы тоже не назвал положительной была связана с управляемостью аэропланов, на которых стояли такие движки. Немалая масса вращающегося блока представляла собой по сути дела большой гироскоп, поэтому гироскопический эффект был неизбежен 🙂 .
Пока самолет летел прямолинейно, его влияние не было сильно заметно, но стоило начать совершать какие-либо полетные эволюции, как сразу проявлялась гироскопическая прецессия. Из-за этого и вкупе с большим крутящим моментом массивного блока цилиндров при выбранном правом вращении винта самолет очень неохотно поворачивал влево и при этом задирал нос, но зато быстро делал правые развороты с большой тенденцией к опусканию носа.
Такой эффект с одной стороны очень мешал (особенно молодым и неопытным пилотам), а с другой был полезен при проведении воздушных боев , в так называемых «собачьих свалках» (dogfights). Это, конечно, для опытных летчиков, которые могли с толком использовать эту особенность.
Очень характерен в этом плане был известный самолет Sopwith Camel F.1 Королевских ВВС, считавшийся лучшим истребителем Первой Мировой. На нем стоял ротативный двигатель Clerget 9B ( как примечание добавлю, что в последствии также ставился и английский Bentley BR.1(150 л.с.)). Мощный (130 л.с.), но достаточно капризный двигатель, чувствительный к составу топлива и к маслу. Мог запросто отказать на взлете. Но именно благодаря ему и особенностям компоновки фюзеляжа (рассредоточению полезного оборудования) Camel был очень маневренен.
Истребитель Sopwith Camel F.1 с двигателем Clerget 9B .
Истребитель Sopwith Camel F.1 (реплика).
Маневренность эта, правда, доходила до крайности. В управлении истребитель был необычайно строг и вообще имел кое-какие неприятные особенности. Например, большое желание войти в штопор на малой скорости 🙂 . Он абсолютно не подходил для обучения молодых пилотов. По некоторой статистике за время войны в боевых действиях на этом аэроплане погибло 415 пилотов, а в летных происшествиях – 385. Цифры красноречивые…
Однако опытные пилоты, хорошо его освоившие, могли извлечь большую пользу из его особенностей и делали это. Интересно, что из-за нежелания Camel-а быстро разворачиваться влево, многие пилоты предпочитали делать это, так сказать, «через правое плечо» 🙂 . Поворот вправо на 270º получался значительно быстрее, чем влево на 90º .
Основным и достойным противником для Sopwith Camel F.1 был немецкий триплан Fokker Dr.I с двигателем Oberursel UR.II (полный аналог французского Le Rhône 9J). На таком воевал Барон Ма́нфред А́льбрехт фон Рихтго́фен (Manfred Albrecht Freiherr von Richthofen), знаменитый «Красный барон».
Триплан Fokker Dr.I
Германский двигатель Oberursel-UR-2. Копия Le Rhône 9J.
Истребитель-триплан Fokker Dr.I (современная реплика, правда двигатель у нее не ротативный).
Fokker DR1, современная реплика с настоящим ротативным двигателем.
Триплан Fokker Dr.I незадолго до гибели «Красного Барона».
За время войны ротативные двигатели достигли своего полного расцвета. При имеющихся запросах армии, несмотря на свои недостатки они очень хорошо подходили для решения, так сказать, триединой задачи «мощность – вес – надежность». Особенно, что касается легких истребителей. Ведь именно на них в подавляющем большинстве такие движки стояли.
Более крупные и тяжелые самолеты продолжали летать, используя традиционные рядные движки.
Однако авиация развивалась бурными темпами. Требовалась все большая мощность двигателей. Для стационарных рядных это достигалось путем увеличения максимального количества оборотов. Возможности совершенствования в этом направлении были. Улучшались системы зажигания и газораспределения, принципы образования топливовоздушной смеси. Применялись все более совершенные материалы.
Это позволило к концу Первой Мировой войны поднять максимальную величину оборотов стационарного двигателя с 1200 до 2000 об/мин.
Однако, для ротационного двигателя этот было невозможно. Организовать правильное смесеобразование было нельзя. Все приходилось делать «на глазок», поэтому расход топлива (как и масла) был, мягко говоря, немаленьким 🙂 (в том числе, кстати, из-за постоянной работы на больших оборотах).
Какие-либо внешние регулировочные работы на двигателе, пока он находится в запущенном состоянии само собой были невозможны.
Повысить частоту вращения тоже не получалось, потому что сопротивление воздуха быстро вращающемуся блоку цилиндров было достаточно большим. Более того, при увеличении скорости вращения, сопротивление росло еще быстрее. Ведь, как известно, скоростной напор пропорционален квадрату скорости ( ρV2/2, где ρ – плотность воздуха, V – скорость потока). То есть если скорость просто растет, то сопротивление растет в квадрате (примерно 🙂 ).
При попытках на некоторых моделях двигателей начала войны поднять обороты с 1200 об/мин до 1400 об/мин сопротивление поднималось на 38%. То есть получалось, что возросшая мощность двигателя больше тратилась на преодоление сопротивления, чем на создание полезной тяги воздушного винта.
Немецкой фирмой Siemens AG была сделана попытка обойти эту проблему с другой стороны. Был выполнен 11-цилиндровый двигатель так называемой биротативной схемы (наименование Siemens-Halske Sh.III ). В нем блок цилиндров вращался в одну сторону с частотой 900 об/мин., а вал (ранее неподвижный) в другую с той же частотой. Суммарная относительная частота составила 1800 об/мин. Это позволило достичь мощности в 170 л.с.
Биротативный двигатель Siemens-Halske Sh.III .
Истребитель Siemens-Schuckert D.IV .
Истребитель Siemens-Schuckert D.IV в берлинском музее.
Этот двигатель имел меньшее сопротивление воздуху при вращении и меньший крутящий момент, мешающий управлению. Устанавливался на истребителе Siemens-Schuckert D.IV , который по мнению многих специалистов стал одним из лучших маневренных истребителей времен войны. Однако производиться начал поздно и сделан был в небольшом количестве экземпляров.
Существующее положение Siemens-Halske Sh.III не поправил и не смог опять поднять ротативные двигатели на должную высоту.
Недостатков у них, как видите, хватало. Ко всему прочему могу еще добавить, что движки эти были достаточно дороги. Ведь из-за большой быстро вращающейся массы все детали двигателя должны были быть хорошо отбалансированы и четко подогнаны. Плюс сами материалы были недешевы. Это приводило к тому, что, например, двигатель Monosoupape по ценам 1916 года стоил порядка 4000$ (что в переводе на курс года 2000-го составляет примерно 65000$). Это при том, что в движке-то, вобщем-то, по нынешним понятиям 🙂 , ничего особенного-то нет.
Ко всему прочему моторесурс всех таких двигателей был невысок (вплоть до 10-ти часов между ремонтами) и менять их приходилось часто, несмотря на высокую стоимость.
Все эти недостатки копились и в конце концов чаша оказалась переполнена. Ротативный двигатель широко использовался и совершенствовался (по мере возможности) вплоть до конца войны. Самолеты с такими движками некоторое время использовались во время гражданской войны в России и иностранной интервенции. Но в целом их популярность быстро пошла на спад.
Совершенствование науки и производства привели к тому, что на сцену уверенно вышел последователь ротативного двигателя – радиальный или звездообразный двигатель с воздушным охлаждением, который не сходит с нее и по сей день, работая, между прочим, в содружестве с рядным поршневым авиационным двигателем с жидкостным охлаждением.
Ротативный двигатель, оставив яркий след в истории авиации, занимает теперь почетное место в музеях и на исторических выставках.
На этом заканчиваю 🙂 . В заключение как всегда кое-какое интересное видео. Первый ролик – запуск восстановленного двигателя Гном 1918 года выпуска. Далее три ролика о работе двигателя и полетах восстановленного Sopwith Camel F.1, а также Fokker Dr.I (на заднем плане 🙂 ). Интересного вам просмотра и до встречи…

P.S. Один из моих читателей (Александр) совершенно справедливо указал мне на то, что в ролике, где вместе с Сопвичем летает современная реплика германского триплана, движок у этого триплана не ротативный. Абсолютно верно. Я, увлекшись Сопвичем, не обратил на это внимание 🙂 . Прошу прощения у читателей и помещаю ролик (и фото), где в полете современная реплика Фоккера с настоящим ротативным движком. Самолет здесь классно показан 🙂 …

Ротативный двигатель

Смотреть что такое «Ротативный двигатель» в других словарях:

  • М-2 (двигатель) — У этого термина существуют и другие значения, см. M2. М 2 Производитель: ГАЗ №2 Годы производства: 1919 1927 Тип: 9 цилиндровый звездообразный ротативный четырёхтактный Технические характеристики Объём: 15,07 л Ход поршня: 170 мм Количество… … Википедия

  • Nieuport N.11 — Лётно технические характеристики • Двигатель • Авиационное артиллерийское оружие • Авиационные средства поражения • Классификаторы • Факты • Использование в иностранных ВВС • Модификации • Галерея … Военная энциклопедия

  • Конфигурация двигателя — Три типа двигателей: а однорядный двигатель, b V образный двигатель, с VR двигатель Конфигурация двигателя внутреннего сгорания это инженерный термин, обозначающий расположение главных компонентов поршневого двигателя… … Википедия

  • Caudron G.3 — Лётно технические характеристики • Двигатель • Авиационное артиллерийское оружие • Авиационные средства поражения • Классификаторы • Факты • Использование в иностранных ВВС • Модификации • Галерея … Военная энциклопедия

  • Sopwith Camel — У этого термина существуют и другие значения, см. Sopwith. Sopwith 2F.1 Camel … Википедия

  • Корню, Поль — Поль Корню Paul Cornu … Википедия

  • Nieuport N.24bis — Лётно технические характеристики • Двигатель • Авиационное артиллерийское оружие • Авиационные средства поражения • Классификаторы • Факты • Использование в иностранных ВВС • Модификации • Галерея … Военная энциклопедия

  • Sopwith 7F.1 «Snipe» — Sopwith 7F.1 «Snipe» Лётно технические характеристики • Двигатель • Авиационное артиллерийское оружие • Авиационные средства поражения • Классификаторы • Факты • Использование в иностранных ВВС • Модификации • Галерея … Военная энциклопедия

  • Morane-Saulnier P «Parasol» — Morane Saulnier P «Parasol» Лётно технические характеристики • Двигатель • Авиационное артиллерийское оружие • Авиационные средства поражения • Классификаторы • Факты • Использование в иностранных ВВС • Модификации • Галерея … Военная энциклопедия

  • Нестеров, Пётр Николаевич — В Википедии есть статьи о других людях с такой фамилией, см. Нестеров. Пётр Николаевич Нестеров … Википедия

В конце 20-х годов все еще продолжался импорт значительного числа моторов не только для обеспечения эксплуатации импортированных ранее самолетов, но и для строящихся и проектируемых отечественных. Серийных моторов, кроме М-5, в то время не было, поэтому были приобретены лицензии на право производства двух лучших в то время моторов — это были высотные переразмеренные (без ПЦН) немецкий мотор водяного охлаждения BMW-VI, получивший марку М-17, и французский Гном-Рон «Юпитер VI» (М-22). Оба мотора были довольно быстро освоены в серийном производстве и в течение нескольких лет составляли основу нашего моторного парка. Оба они находились в производстве до 1935 г., а в эксплуатации даже во время Великой Отечественной войны.

Осенью 1925 г. ЦАГИ было дано задание на проектирование одноместного цельнометаллического истребителя. Для него был выбран французский звездообразный мотор воздушного охлаждения Гном-Рон «Юпитер IV» мощностью 420 л. с. Первый экземпляр созданного в ЦАГИ истребителя И-4 (АНТ-5) был выпущен в июле 1927 г. По результатам испытаний оказалось, что летные данные его находятся на уровне лучших самолетов мира и в декабре этого же года состоялось решение о запуске его в серию. Головной серийный самолет был выпущен в октябре 1928 г. с мотором Гном-Рон «Юпитер VI» мощностью 480 л. с. Этот мотор в то время широко, применялся для новых самолетов во многих странах.

Для ознакомления с конструкцией и технологией производства на фирму Гном-Рон были командированы инженеры и рабочие завода ╕ 29 в г. Запорожье, которому было поручено изготовление этого мотора. Завод был реконструирован и пополнен станочным парком, необходимым для производства крупной серии мотора «Юпитер VI», получившего у нас обозначение М-22. Надо отметить, что в производстве этих моторов многие операции механической обработки и сборки выполнялись с применением ручных пригонок, что требовало высокой квалификации рабочих и мастеров. К таким операциям относились, например, шабровка днища цилиндра и головки, плавающей втулки главного шатуна. Тем не менее, завод быстро освоил производство мотора по чертежам, которые были выпущены заводским КБ под руководством А. С. Назарова, и уже в 1930 г. число выпущенных моторов позволило полностью освободиться от импорта.

Этот девятицилиндровый звездообразный мотор воздушного охлаждения (табл. 4) был высотным переразмеренным с расчетной высотой около 1500 м. Он имел несколько характерных особенностей, в частности, четырехклапанную головку цилиндра из легкого сплава, которая не навертывалась на резьбу в верхней части открытой гильзы, как у большинства моторов такого типа впоследствии, а крепилась на шпильках к плоскому днищу глухой гильзы. Чтобы обеспечить хорошую теплопередачу от стального днища к головке, необходима была очень точная пригонка стыка по плоскости, что достигалось ручной шабровкой. Это был также один из немногих моторов, поршень которого был сильно облегчен путем удаления части юбки в ненагруженной ее зоне (так называемый поршень типа Рикардо — по имени известного английского двигателиста). Еще одной особенностью мотора было применение компенсации увеличения зазоров в механизме привода клапанов. Поскольку при работе мотора цилиндр «нагрет существенно больше, чем тяга, управляющая открытием клапана, то в результате различия в значении теплового расширения этих деталей зазор в передаче существенно увеличивается (на 0,5-1,5 мм в зависимости от размеров и конструкции мотора). Это приводит к уменьшению фаз газораспределения на горячем моторе. На М-22, как, впрочем, и на всех моторах фирм и , применена кинематическая система компенсации зазоров, при которой оси клапанных коромысел помещены не на головке цилиндра, а на качалке, соединенной с головкой и компенсаторной тягой. Размеры звеньев механизма подобраны таким образом, что при любом перемещении головки цилиндра от картера зазоры в клапанах остаются практически неизменными.

Серийный выпуск мотора М-22 был значительным событием в отечественном моторостроении. С этим мотором строились серийные И-4, И-5 и И-16, пассажирские самолеты К-5, «Сталь-3», ХАИ-1 и некоторые другие. В то время высокооктановых бензинов еще не было, да и само понятие октанового числа применялось только в научных трудах. Поэтому, чтобы обеспечить работы этого мотора при высокой для того времени степени сжатия без детонации, в качестве топлива применяли смесь легкого грозненского бензина с бензолом в равных объемах или сравнительно стойкий к детонации тяжелый бакинский бензин. Эти топлива имели октановое число около 70-74. Смазочное масло — касторовое или импортное «Кастроль-Р» (смесь касторового и минерального масел). Было выпущено более 3500 моторов М-22.