Сверхтяжелая ракета носитель

Проект ракеты-носителя сверхтяжелого класса «Энергия-5В»

Российская космическая отрасль эксплуатирует ракеты-носителей нескольких классов и типов. Для решения некоторых задач космонавтике необходимы ракеты сверхтяжелого класса, но на данный момент подобная техника у нашей страны отсутствует. Тем не менее, уже ведется разработка перспективного проекта. В течение нескольких следующих лет промышленность должна будет разработать и довести до испытаний перспективную ракету «Энергия-5В».

О существовании планов по созданию сверхтяжелой ракеты-носителя «Энергия-5В» было объявлено осенью прошлого года. В середине ноября 2016-го в Москве прошла конференция, посвященная проблемам развития ракетно-космической техники. В ходе этого мероприятия выступил генеральный директор ракетно-космической корпорации «Энергия» им. С.П. Королева Владимир Солнцев. По словам руководителя крупнейшей организации, в планах имеется создание перспективной ракеты-носителя сверхтяжелого класса. При этом планируется использование весьма интересного подхода к формированию облика ракеты.
Новую ракету предлагалось строить по модульному принципу. Ключевые узлы следовало заимствовать из уже существующих или разрабатываемых проектов ракетной техники. Так, первая и вторая ступени должны быть взяты из проекта перспективной ракеты среднего класса «Феникс». Верхнюю ступень с двигателями, использующими водородное топливо, планировалось заимствовать у проектируемой тяжелой ракеты «Ангара-А5В». Как отметил В. Солнцев, проектом «Энергия-5В» предлагается создание своеобразного конструктора, из которого можно будет собирать носитель нужной конфигурации с требуемыми характеристиками. Целью подобного подхода является сокращение сроков завершения работ и стоимости проекта.

К моменту оглашения информации о перспективном проекте «Энергия-5В» уже имелись определенные сведения о двух других ракетах-носителях, планируемых для использования в качестве источника узлов и агрегатов. Так, известно, что ракета «Ангара-А5В» представляет собой вариант другого проекта своего семейства, отличающийся применением третьей ступени с двигателями на топливной паре «водород-кислород». Подобная модернизация имеющегося проекта, по расчетам, позволяет заметным образом увеличить полезную нагрузку.
Второй источник агрегатов – ракета-носитель среднего класса «Феникс». Такая ракета сможет поднимать на низкую околоземную орбиту до 17 т груза, в том числе пилотируемые корабли. Также ракета получит возможность вывода 2,5 т груза на геостационарную орбиту, для чего ей понадобится разгонный блок. Разработку «Феникса» планируется начать в 2018 году и завершить до 2025-го. Еще в прошлом году стало известно, что в перспективе агрегаты этой ракеты могут быть использованы при создании перспективного носителя тяжелого или сверхтяжелого класса.

В прошлом году были объявлены только самые общие планы, определяющие ход дальнейших работ в области перспективных ракет-носителей. Через несколько месяцев стали известны некоторые подробности будущего проекта «Энергия-5В». Как оказалось, ракетно-космическая отрасль планирует предложить сразу два варианта ракеты с разными характеристиками и возможностями.
Сведения о новых планах в рамках перспективного проекта были опубликованы в конце января информагентством ТАСС. Информация была получена от неназванного источника в космической отрасли. Одновременно с этим отмечалось, что пресс-центр РКК «Энергия» отказался комментировать подобные новости. Тем не менее, и в этом случае опубликованная информация представляет большой интерес.
Источник агентства ТАСС сообщил, что к тому времени был определен примерный облик сразу двух сверхтяжелых ракет-носителей. Два варианта ракеты «Энергия-5В» получили собственные рабочие названия «Энергия-5В-ПТК» и «Энергия-5ВР-ПТК». Предварительные проработки по двум проектам планировалось представить руководству корпорации «Энергия», а также ведущим организациям ракетно-космической отрасли.
Согласно оглашенной информации, ракеты обоих типов будут строиться по трехступенчатой схеме и использовать жидкостные двигатели. Первую и вторую ступени двух ракет предлагается оснащать двигателями РД-171МВ. Первая должна получить четыре таких изделия, вторая – два. Третья ступень должна будет комплектоваться двумя двигателями РД-0150, использующими водородное топливо. Два варианта ракеты будут близки по своим характеристикам, но предполагается предусмотреть некоторую разницу в возможностях.
Ракета-носитель «Энергия-5В-ПТК», по существующим расчетам, будет иметь стартовую массу 2368 т. Она сможет выводить на низкую околоземную орбиту до 100 т полезной нагрузки. На окололунную орбиту можно будет отправить до 20,5 т. Проектом «Энергия-5ВР-ПТК» предлагается оснащение ракеты разгонным блоком, имеющим двигатели на водородном топливе. В такой конфигурации носитель будет иметь стартовую массу 2346 т. Применение разгонного блока даст соответствующие преимущества при решении тех или иных задач.
При использовании ракет «Энергия-5В» для доставки на орбиту пилотируемого космического аппарата «Федерация» или перспективного взлетно-посадочного модуля для лунной экспедиции возможно применение т.н. межорбитального буксира. Это изделие может быть разработано и построено на основе одного из существующих разгонных блоков семейства ДМ.
В течение нескольких следующих месяцев предприятия ракетно-космической отрасли продолжали работу в рамках перспективного проекта. Среди прочего, были определены примерные сроки создания новых ракет-носителей и стартовых комплексов для их эксплуатации. 8 июня агентство ТАСС опубликовало новые данные о планах по ракете «Энергия-5В». Как и ранее, сведения были получены от неназванного источника в отрасли. Кроме того, подобно предыдущим сообщениям, сотрудники ТАСС не смогли получить комментарий от официальных лиц, на этот раз из государственной корпорации «Роскосмос»
По данным неназванного источника, стартовый комплекс для ракет «Энергия-5В» будет построен на космодроме Восточный. Согласно нынешним планам, строительные работы будут завершены в 2027 году. Первый запуск сверхтяжелого носителя с новейшего стартового стола будет выполнен в 2028-м. Также были оглашены некоторые особенности будущего комплекса. Как оказалось, текущие планы ракетно-космической отрасли подразумевают создание универсальной пусковой площадки.
Источник ТАСС рассказал, что стартовый стол для «Энергии-5В» будет строиться по тем же принципам, что и универсальный комплекс старт-стенд 17П31 для носителя «Энергия». Этот комплекс был построен три десятилетия назад на площадке №250 космодрома Байконур и впоследствии использовался для двух запусков сверхтяжелой ракеты «Энергия». Какие именно принципы стартового стола для старой «Энергии» должны перейти в новый проект – не уточнялось.
Утверждается, что стартовый стол для ракеты «Энергия-5В» будет универсальным и позволит осуществлять запуски техники разных типов. С его помощью можно будет отправлять в космос перспективные ракеты среднего класса «Союз-5», а также другие носители, выполненные на их базе путем соединения нескольких блоков. Среди прочего, такой стартовый комплекс сможет использоваться вместе с перспективными сверхтяжелыми ракетами семейств «Ангара» и «Энергия-5В».
Так же 8 июня стало известно о планах по ускорению разработки сверхтяжелой ракеты. Вице-премьер Дмитрий Рогозин, заявил, что руководством промышленности было принято решение по форсированию работ по тематике ракеты-носителя сверхтяжелого класса. Для решения подобных задач уже были начаты научно-исследовательские работы по новому двигателю РД-0150. В ближайшем будущем этот проект перейдет в опытно-конструкторскую стадию.
По словам вице-премьера, перспективный двигатель будет использоваться на ракете «Ангара-А5В», и позволит довести ее грузоподъемность до 37 т. В дальнейшем эту силовую установку планируется использовать в составе третьей ступени сверхтяжелой ракеты, создаваемой в настоящее время.
После публикации новостей о планируемом строительстве стартового комплекса на космодроме Восточный, ускорении работ в целом и начале разработки нового двигателя новые сообщения о перспективном проекте «Энергия-5В» не появлялись. Таким образом, на данный момент известны лишь самые общие сведения о проекте, а также ожидаемые характеристики готовой техники. Вполне понятно, что ранее оглашенные расчетные сведения о данных и параметрах в дальнейшем могут заметным образом измениться. Кроме того, могут быть пересмотрены основополагающие моменты проекта. Наконец, по тем или иным причинам разработку сверхтяжелых носителей могут вовсе отменить.
Следует отметить, что, несмотря на схожесть названий и принадлежность к одному классу, перспективная ракета «Энергия-5В» не имеет прямого отношения к носителю, созданному три десятилетия назад. Как следует из ранее публиковавшихся сведений, новый проект сверхтяжелой ракеты будет создаваться на основе современных идей, решений, узлов и агрегатов. Так, для экономии времени и денег авторы проекта рассматривают возможность широкого применения крупных модулей, заимствуемых у существующих образцов ракетной техники.
Известно, что первая и вторая ступени ракет «Энергия-5В-ПТК» и «Энергия-5ВР-ПТК» будут строиться на основе соответствующих агрегатов, планируемых к разработке в рамках проекта «Феникс». Третья ступень, в свою очередь, будет заимствована у тяжелой «Ангары-А5В», которая так же достаточно далека от испытаний. Ракета сможет использовать существующие и перспективные разгонные блоки. Такой подход действительно позволит ускорить и удешевить разработку проекта, хотя и не даст возможности реализовать все планы в ближайшее время. Дело в том, что первый полет ракеты «Ангара-А5В» запланирован на 2023 год, а «Феникс» поднимется в воздух примерно через два года. Для проектирования и подготовки к испытаниям «Энергии-5В» понадобится дождаться завершения смежных проектов, используемых в качестве источника узлов.
Похожим образом обстоит дело и с двигателями. Согласно сообщениям начала года, первая и вторая ступени сверхтяжелого носителя будут комплектоваться двигателями РД-171МВ. Насколько известно, такая модификация уже существующего РД-171 пока не готова и появится только в обозримом будущем. Двигатель РД-0150 тоже пока не существует, а его разработка находится на самых ранних стадиях. Таким образом, отсутствие необходимых двигателей тоже не позволит завершить проект «Энергия-5В» в ближайшем будущем.
Оглашенные характеристики перспективной сверхтяжелой ракеты-носителя представляют большой интерес. Еще несколько месяцев назад стало известно, что ракеты смогут отправлять на низкую околоземную орбиту до 100 т груза, к у Луне удастся доставлять чуть более 20 т. При помощи разгонных блоков той или иной модели можно будет получать соответствующие результаты. На данный момент серийные ракеты-носители с подобными характеристиками в мире не эксплуатируются. Ведется разработка нескольких проектов, но пока они не смогли дойти до испытательных пусков.
Появление сверхтяжелой ракеты-носителя способно оказать самое серьезное влияние на дальнейшее развитие отечественной космонавтики. В прошлом в нашей стране предпринимались попытки освоения этого направления, но они, по тем или иным причинам, не дали реальных результатов. Так, первая отечественная сверхтяжелая ракета Н-1, способная выводить на низкую околоземную орбиту 75 т груза, испытывалась четыре раза, и все запуски окончились аварией. В середине семидесятых программу закрыли в пользу нового проекта.
Следующей попыткой освоения сверхтяжелого направления стал проект «Энергия». Максимальная полезная нагрузка такой ракеты составляла 100 т. Она могла выводить на орбиту как космические аппараты традиционного облика, так и многоразовый транспортный корабль «Буран». В 1987-88 годах состоялись два испытательных пуска, после чего работы пришлось прекратить. Проект оказался слишком дорогим для реализации в то время. Распад Советского Союза привел к закрытию проекта.
В дальнейшем неоднократно предлагалось создать новый проект сверхтяжелой ракеты-носителя. К примеру, в течение определенного времени рассматривалась возможность разработки такого проекта в рамках семейства «Ангара». Тем не менее, по техническим и экономическим причинам было решено ограничиться только техникой тяжелого класса. Создание сверхтяжелого носителя отложили на неопределенный срок.

Очередное обсуждение возможности создания такой ракеты началось несколько лет назад. В прошлом году были оглашены конкретные планы, а в начале 2017-го стало известно о формировании технического облика сразу двух ракет с близкими характеристиками и разными возможностями. По последним данным, эти проекты будут доведены до испытаний только в конце следующего десятилетия. В 2027 году на космодроме Восточный будет достроен необходимый стартовый комплекс, а в 2028-м состоится первый запуск. При этом есть основания полагать, что эти сроки могут сдвинуться влево, поскольку руководством страны было принято принципиальное решение об ускорении работ.
К настоящему времени отечественная ракетно-космическая промышленность успела приступить к разработке целого ряда перспективных ракет-носителей, которым в будущем предстоит заменить существующие и эксплуатируемые образцы. Имеющиеся планы подразумевают создание ракет всех классов, от легких до сверхтяжелых. Это позволит не только модернизировать парк носителей путем замены устаревшей техники, но и расширить возможности отечественной космонавтики, а также повысить ее конкурентный потенциал. Тем не менее, на выполнение всех планов и создание всех желаемых ракет понадобится достаточно много времени – первые результаты текущих программ появятся не ранее конца текущего десятилетия.
По материалам сайтов:

Деньги в небо

Российскую сверхтяжелую ракету планируется запустить в 2028 году, строительство соответствующего стартового стола на космодроме Восточный должно завершиться в 2027 году. Носитель получит название «Энергия-5», его проектированием занимается РКК «Энергия», производство доверят РКЦ «Прогресс». Такая ракета практически не нужна для околоземных пусков, в ее задачи может входить отправка миссий к Луне. Почему в России пока еще могут построить сверхтяжелую ракету, но вряд ли успеют до обозначенного срока, рассказывает «Лента.ру».

«Создается конструктор»

Проект «Энергия-5В» впервые был презентован генеральным директором «Энергии» Владимиром Солнцевым в ноябре 2016 года. В настоящее время в РКК работают над двумя ракетами — «Энергия-5В-ПТК» и «Энергия-5ВР-ПТК» (последняя — с кислородно-водородным разгонным блоком). На низкую опорную орбиту носители способны вывести до ста тонн, к спутнику Земли — до 20,5 тонны: лунную версию разрабатываемого РКК корабля «Федерация» или лунный взлетно-посадочный модуль.

По замыслу ракета сверхтяжелого класса «Энергия-5» объединит пять носителей среднего класса «Союз-5» — один модуль в центре (фактически вторая ступень), четыре — по бокам (первая ступень). Третью ступень позаимствуют у тяжелой ракеты «Ангара-А5В». К сожалению, ни «Союз-5», ни «Ангара-А5В» пока еще ни разу не летали.

Носитель «Союз-5» должен прийти на смену собираемым на Украине «Зенитам», которые более чем на 70 процентов состоят из российских комплектующих, а также с течением времени ракетам «Союз-2». Его планируется использовать в пилотируемой космонавтике, для запуска околоземной версии корабля «Федерация», а также в рамках проекта «Морской старт». На «Сункар» (название «Союза-5» в рамках российско-казахстанского проекта «Байтерек») в Федеральной космической программе на 2016-2025 годы (опытно-конструкторская работа «Феникс») выделяется 30 миллиардов рублей.

Носитель должен стартовать в 2022 году. «Союз-5» сможет выводить на низкую опорную орбиту до 17 тонн, в ракете предусмотрено в два раза меньше деталей и сборочных единиц, чем в «Союзе-2». Двигатель РД-171 первой ступени «Зенитов» (и согласно планам «Союза-5») пока считается самым мощным в мире жидкостным ракетным двигателем. Четыре таких агрегата (в версии РД-170) устанавливались на боковые ускорители советской сверхтяжелой ракеты «Энергия».

— SpaceX (@SpaceX) 09 мая 2017, 18:51

«Ангара-А5В» представляет собой тяжелую модификацию ракет семейства «Ангара» с кислородно-водородной третьей ступенью, увеличивающей грузоподъемность на десять тонн (примерно до 40 тонн на низкой опорной орбите). Разработка оценивается в 37 миллиардов рублей, вся программа создания «Ангары-А5В» с учетом развертывания необходимой инфраструктуры обойдется в 150 миллиардов рублей. Эскизный проект «Ангары-А5В» намерены завершить в 2017 году, закончить наземные испытания — в 2025 году, приступить к летным тестам — не ранее 2027 года.

От планов создания сверхтяжелого носителя в рамках семейства «Ангара» (ракета «Ангара-7») в «Роскосмосе» давно отказались. За разработку и производство таких ракет отвечает московский «Центр Хруничева», который давно уже при помощи многомиллиардных вливаний пытаются вывести из кризиса. «По сути, создается конструктор, из которого мы начнем моделировать тот или иной тип носителя. Все это делается для того, чтобы сократить сроки и стоимость», — говорит об «Энергии-5В» Солнцев.

Изобрести велосипед

В истории советской космонавтики было два проекта сверхтяжелых носителей. Первая ракета, Н-1, с 1969 по 1972 год запускалась четыре раза, все — неудачно. Это сказалось на космической отрасли СССР — преемник Сергея Королева Василий Мишин ушел в отставку в 1974 году, его место занял Валентин Глушко. Он же принял решение о свертывании проекта Н-1 и начале работы над новым сверхтяжелым носителем («Энергией»), что вызвало у современников неоднозначную реакцию.

К сожалению, технологии, использованные при создании советской сверхтяжелой ракеты «Энергия», оба пуска которой (в 1987 и 1988 годах) были успешными, во многом утрачены, а их воспроизведение экономически нецелесообразно. В разработке комплекса «Энергия-Буран» (ракеты и выводимого ею многоразового корабля), как отмечается на сайте РКК «Энергия», «участвовало 1206 предприятий и организаций почти ста министерств и ведомств, были задействованы крупнейшие научные и производственные центры России, Украины, Белоруссии и других республик СССР». В частности, если производство керосино-кислородных двигателей РД-170 удалось сохранить, то выпускать водородно-кислородные РД-0120 (четыре агрегата устанавливались в центральном блоке «Энергии», он же — вторая ступень) современная Россия не в состоянии.

Переход к трехступенчатой схеме ракеты-носителя и рациональное использование кислородно-водородного топлива позволит, как решили в РКК «Энергия», почти в полтора раза снизить общие затраты на опытно-конструкторские работы по новой сверхтяжелой ракете по сравнению с копированием ракеты-носителя «Энергия» (система «Энергия-Буран» обошлась СССР в 16,5 миллиардов советских рублей).

Возможные расходы на «Энергию-5» пока неизвестны. В 2015 году подсчитали, что на проект, включая строительство стартовой площадки на Восточном и соответствующую инфраструктуру, уйдет около 2,2 триллиона рублей. Вероятно, эту сумму можно сократить, особенно если удастся наладить сотрудничество по созданию ракеты «Союз-5» с Казахстаном и компанией «С7 космические транспортные системы», собственником «Морского старта».

Такие дела

Кроме России, над созданием сверхтяжелых носителей задумываются в Китае. В США такая ракета почти готова. В 2017 году ожидается старт носителя Falcon Heavy (на низкую опорную орбиту способен выводить 63,8 тонны) компании SpaceX, в 2019-м — SLS (Space Launch System, в зависимости от версии, выводит до 70 и 129 тонн на низкую опорную орбиту) компании Boeing, участвовавшей в разработке носителя Saturn V. У Falcon Heavy уже есть один коммерческий контракт, также с помощью этой ракеты планируется отправить туристов к Луне и корабль Red Dragon к Марсу. SLS, предназначенный для миссий к Луне и Марсу, может быть задействован более десяти раз.

«Не хотели бы оплачивать»

Вопросы, зачем России «Энергия-5» и выдержит ли «Роскосмос» сроки, открывают безграничное поле для дискуссий. «Разговор у президента шел о перспективе создания ракеты сверхтяжелого класса. Президентом поставлена задача перед «Роскосмосом» обеспечить ускорение этих работ за счет разработки всех тех технологий, которые были представлены генеральными конструкторами», — сообщил в мае 2017 года вице-премьер Дмитрий Рогозин по итогам совещания у Владимира Путина. Рогозин отметил, что такая ракета появится только после 2025 года и будет предназначена для полетов не вокруг Земли, а вокруг Луны и других космических тел. «Это новый этап пилотируемой космонавтики», — подчеркнул вице-премьер.

Опрос «Россия в космосе XXI века: амбиции и прагматизм», проведенный ВЦИОМ, показал: 51 процент россиян считает, что страна должна первой создать базу на Луне, 50 процентов — отправить экспедицию на Марс. Противоположного мнения придерживаются 41 и 44 процентов соответственно. «В отношении россиян к освоению космоса за романтическим флером дальних странствий и амбиций страны проглядывает заметный прагматизм. Россияне хотели бы быть первыми во всех значимых проектах, но не хотели бы оплачивать сто процентов расходов», — отмечает аналитик ВЦИОМ Иван Леконцев.

«Russian Heavy» или новый российский сверхтяж

Как ясно из документа, проектируемая российская сверхтяжелая ракета не станет многоразовой. А значит — ее можно использовать только в государственных проектах, где не нужна коммерческая конкурентоспособность. Ракета, первый запуск которой может случиться в 2028 году, кажется хорошо подходящей для обслуживания окололунной станции, курс на создание которой взяли Соединенные Штаты при Трампе.

С одной стороны, это хорошо — явно «некоммерческая» ракета не будет испытывать давления со стороны SpaceX. С другой — получается, что наличие или отсутствие реальных задач для отечественного сверхтяжа зависит лишь от желания США вкладываться в окололунную станцию. История учит, что NASA со времен лунной программы почти никогда не доводило до конца свои пилотируемые проекты. Соответственно, новая российская ракета рискует остаться без работы, если американцы опять передумают.

Почему российский сверхтяж не может быть даже частично многоразовым

Из приложения к контракту видно, что сверхтяжелая ракета будет создаваться из блоков средней ракеты «Союз-5», проработку которой недавно начала РКК «Энергия». Первый полет «Союза-5» намечен на 2022 год. Технически эта ракета, выводящая на орбиту 18 тонн, будет упрощенным вариантом советского «Зенита».

Ракета-носитель «Зенит-3 SL БФ».
Фото: Олег Трусов / ИТАР-ТАСС

В частности, двигатель ее первой ступени, РД-171МВ, — это, по сути, упрощенный РД-171 первой ступени «Зенита», нет только дросселей пуска окислителя (кислорода). За счет этого становится меньше возможностей управлять тягой, но зато на пять процентов повышается мощность, проще, легче и надежнее становится конструкция двигателя. Производитель, соответственно, надеется благодаря этому снизить цену двигателя на 15—20 процентов относительно «зенитовского» РД-171. Пуск «Союза-5», по планам, будет стоить 35 миллионов долларов (правда, за счет чего именно, пока никто не знает). Это значит, что запуск сверхтяжа из «пакета» союзовских ступеней будет стоить несколько сотен миллионов долларов — стоимость сверхтяжа нельзя свести к простой сумме стоимости его элементов, их сборка потребует множества уникальных работ по сопряжению, которые поднимают удельную стоимость на десятки процентов.

И вроде бы все хорошо, ведь прямо сейчас в России нет сверхтяжа, а тут он появится. И не на базе «Ангары», которая по 100 миллионов долларов за штуку, а на базе предположительно более дешевого «Союза-5». Но есть одно «но». Как известно, сегодня российские ракеты-носители на коммерческом рынке присутствуют в незначительных количествах — их вытеснили более дешевые ракеты Falcon 9. Одна из сильных сторон этой американской ракеты — возможность повторного использования самой дорогой ее части — первой ступени. Пока она экономит SpaceX около 10 процентов стоимости каждого пуска, однако после внедрения последней модификации Falcon 9 — Block 5 — будет экономить уже до 30 процентов.

А «Союз-5» и создаваемый на его основе сверхтяж по этому пути пойти не смогут. Причина довольно проста — кислород-нафтиловый двигатель РД-171МВ (нафтил, С12,79H24,52 — углеводородное топливо, внедряемое из-за снижения добычи нефти, подходящей для изготовления ракетного керосина) в первой ступени «Союза-5» всего один, а у Falcon 9 в первой ступени — сразу девять более слабых двигателей. Для посадки ракеты на хвост лучше подходит несколько двигателей меньшей мощности, чем один более мощный.

Первая ступень Falcon 9 садится на морскую платформу после запуска.
Фото: SpaceX

Дело в том, что современные ракетные двигатели могут варьировать тягу очень умеренно. От них легко получить полную мощность, но трудно добиться совсем малой. Пока ракеты летали по одному разу, все было нормально: даже вес самой ракеты с топливом таков, что там пять процентов мощности не нужны, с ними ничего в космос не вывести.

Иная история со спасением ступени. Когда она садится, топлива в ней остается мало — почти все ушло на вывод полезной нагрузки. Сама ступень очень легкая. Если «пережать» тягу двигателя, ракета просто не сядет, а когда топливо кончится — упадет камнем. Хорошо, когда, как у Falcon 9, двигателей девять — отключил часть и садись. Если один, как у советского «Зенита» и его потомка «Союза-5», это сделать будет заметно сложнее.

Двигатели «РД-180» (слева) и «РД-171» в цехе НПО «Энергомаш»
Фото: Борис Кавашкин / ИТАР-ТАСС

Кроме того, у РД-171 с самого начала упрощенная система управления соплами, что дополнительно усложняет посадку на хвост. Нет в конструкции «Союз-5» места и для «ног» — опор, без которых ракету на хвост не посадить.

Сверхтяж будет собираться на базе первых ступеней «Союза-5» — точно так же, как Falcon Heavy собирается на основе трех первых ступеней Falcon 9. Если «кирпичики» одноразовые, то и дом из них будет одноразовый.

Отсутствие многоразовости в проекте видно и из того, что приложение к контракту детально описывает требования по обеспечению безопасности падения ступеней сверхтяжелой ракеты, но не детализирует вопросы их пригодности к спасению.

Falcon Heavy
Фото: Official SpaceX Photos

Что отсутствие многоразовости говорит нам о целях проекта

Российская сверхтяжелая ракета, согласно имеющимся документам, полетит не ранее 2028 года. Это могло бы создать для нее риски конкуренции с Falcon Heavy — многоразовой и потенциально более дешевой. Однако на самом деле они малы. К тому времени SpaceX предполагает заменить Falcon Heavy, в связи с ее моральным устареванием, на более мощную и дешевую (на килограмм нагрузки) ракету BFR.

Из этого очевидно, что на коммерческий рынок российский сверхтяж вряд ли кто нацелит. Если авиалайнеры одной компании летают один раз, а другой — много, то билеты первой компании будут слишком дорогими для коммерческих перевозок. Ракеты SpaceX вытеснили российские «Протоны» с рынка даже в одноразовом варианте, и пока нет оснований считать, что при конкуренции с их многоразовыми сверхтяжелыми потомками что-то изменится.

Фото: chrdk.ru

Однако есть отрасль, которая «имунна» к дорогим пускам — государственные космические проекты. В прошлом году NASA очень сильно напирало на проект окололунной станции. Причина такого интереса к этой программе у NASA проста: агентство к началу 2020-х достроит свою ракету SLS, которая станет самой мощной в мире. На полеты к Луне NASA достаточно денег не дают, а летать на SLS к МКС не получится — SLS в 10 с лишним раз дороже, чем Falcon Heavy. Будет невозможно объяснить налогоплательщику, зачем летать за такие деньги, если есть способ дешевле.

Конечно, Falcon Heavy способна доставить модули и к окололунной станции, и это тоже будет дешевле. Но здесь NASA в выгодном положении: налогоплательщик не в курсе тонкостей о возможностях Falcon Heavy, поэтому заместитель главы NASA Уильям Герстенмайер уже ведет дезинформационную кампанию, публично утверждая, что SLS может доставить модули для новой станции, а ракета SpaceX — нет. Его, конечно, уже уличали в искажении фактов, но это не так важно, поскольку голосовать за финансирование SLS будут в Конгрессе, а там все равно газет не читают.

Художественное изображение полета ракеты SLS.
Изображение: NASA/MSFC

Роскосмос очень быстро подключился к этому крайне полезному для него проекту. С советского времени собственных пилотируемых космических программ у нас нет, поскольку они требует серьезного финансирования. Поэтому для нашей страны единственный реальный шанс на заметную пилотируемую активность в космосе — это участие в международном проекте. Уже прошлой осенью глава Роскосмоса Игорь Комаров подписал с представителем NASA заявление о намерении сотрудничать по окололунной станции.

Это отличный шаг, благо других оснований для финансирования пилотируемых программ у нас пока не предвидится. Но такое сотрудничество требует, чтобы у России была ракета, способная долететь до окололунной орбиты с перспективным космическим кораблем «Федерация» (более 15 тонн). Согласно приложению к контракту на проектирование нового российского сверхтяжа, примерно в этой весовой категории — до 20 тонн к окололунной орбите — и запланированы возможности будущего российского сверхтяжа.

Художественное изображение станции Deep Space Gateway из презентации 2007 года.
Иллюстрация: NASA

Итак, как мы видим, наша сверхтяжелая ракета не просто так задумана одноразовой. Ведь к окололунной станции часто летать никакого смысла нет. Во-первых, невесомость там практически ничем не отличается от невесомости на МКС, то есть новых экспериментов много не поставишь. Во-вторых, цена доставки груза и людей за 400 000 километров (окололунная орбита) заметно выше, чем за 400 километров (орбита МКС).

В третьих, — и это важнее всего — Луна находится за пределами магнитного поля Земли. Радиация вне этого поля — 0,66 зиверта в год. Предельная доза для космонавта по нормам как NASA, так и Роскосмоса — всего 0,5 зиверта в год. На поверхности Луны уровень радиации ниже в два раза, а на Марсе — в три. То есть окололунная станция — самое смертоносное место из когда-либо предложенных людям в истории освоения космоса.

Макеты «Федерации» на выставке МАКС-2013.
Фото: Федеральное космическое агентство / wikimedia commons / CC BY 4.0

Поэтому представители государственных космических агентств уже не раз поясняли, что станция, скорее всего, будет периодически посещаемой, а не постоянно обитаемой. То есть летать туда надо редко и надолго не задерживаться. А для редких полетов многоразовые ракеты не нужны. Если они будут летать по многу раз, то новые ракеты будут делать так редко, что возникнет реальный шанс утраты навыков по их производству.

Таким образом, следует признать: проект российского сверхтяжа выглядит во всех отношениях продуманным и хорошо отвечает поставленной задаче. Он сможет демонстрировать российский флаг в космосе на рубежах, которые взялись покорять американцы. Это отличный проект, за который Роскосмос заслуживает наивысших похвал.

Особенно отличным его делает то, что у нас в стране нет своих задач для сверхтяжа, кроме одной — иметь его, если он будет у США. Так уж исторически сложилось, что у руководства отрасли, а вслед за ним — и страны в целом — нет понимания того, зачем может быть нужен сверхтяж вне престижных международных проектов. Соответственно, поскольку единственный просматривающийся заказчик нашего сверхтяжа — это NASA, участие в их проекте окололунной станции пока наш единственный реальный шанс вообще получить сверхтяжелую ракету.

Почему это рискованно

При всех плюсах ориентации отечественного сверхтяжа на участие в американском проекте Deep Space Gateway у нее есть и серьезный минус. Дело в том, что космическое агентство в США зависит от электорального цикла в этой стране. В последние десятилетия каждый новый президент хочет заработать имиджевых очков, объявив новый, «невиданный» космический проект.

Это может быть что угодно: СОИ Рейгана, возвращение на Луну Буша-младшего, план захвата астероида Обамы или вот, например, создание окололунной станции в эпоху Трампа. Выполнять все это не только не обязательно, но и не нужно. Больше восьми лет никакой президент в США у власти не пробудет, а реализовать без сверхусилий действительно большой космический проект за восемь лет все равно не выйдет.

Проект Deep Space Gateway в связи с этим может постигнуть та же печальная участь, что и более ранние проекты NASA, такие как закрытая при Обаме программа Constellation, в которую были вложены миллиарды долларов и годы труда. До того ровно так же был закрыт целый ряд других программ. Фактически Штаты после полетов на Луну довели до конца только одну пилотируемую программу — МКС.

Взлет тяжелой ракеты-носителя «Дельта IV» с кораблем «Орион» на борту. «Орион» входил в программу Constellation и продолжает разрабатываться после ее свертывания.
NASA / Sandra Joseph and Kevin O’Connell

Особенно большой риск для проекта DSG создает то, что идея окололунной станции вызывает сильное раздражение у американского общества. Известный американский публицист Роберт Зубрин, специализирующийся на космосе, уже отметил: «Там нельзя сделать ничего такого, что нельзя сделать на МКС, за исключением подставления людей под большие дозы радиации — форма медицинского исследования, за которую ряд нацистских врачей вздернули в Нюрнберге».

Может получиться так, что следующий президент США не захочет, чтобы его имя в истории фигурировало рядом с фамилиями Гиммлера и Менгеле. В этом случае российской сверхтяжелой ракете придется менять коней на середине переправы — у нас нет и не планируется никаких самостоятельных национальных космических проектов, для которых была бы нужна сверхтяжелая ракета. В этом случае она рискует остаться без каких-либо определенных целей.

Сверхтяжелое повторение истории с «Ангарой»?

Подобный случай в постсоветской истории нашей космонавтики уже был. Не так давно без большой доли заказов осталась «Ангара», ракета, на создание которой потрачено в ~6,5 раза больше, чем на создание Falcon 9 (разработка которого стоила примерно 400 миллионов долларов).

Макет ракеты-носителя тяжелого класса «Ангара» на VII Международной выставке военной техники, технологий и вооружения cухопутных войск «ВТТВ-Омск-2007».
Фото: Валерий Гашеев / ИТАР-ТАСС

Как отмечал Игорь Комаров еще в прошлом году, планы по производству «Ангары» уменьшились в несколько раз — из-за сокращения финансирования. Снижение числа заказов приводит к простою, а тот, в свою очередь, вызывает рост стоимости производства и пусков. Как мы сейчас знаем, регулярные полеты «Ангары» — спустя 20 лет после запуска программы — так и не начались. Грозит ли та же судьба новому сверхтяжу?

Стоит признать, что NASA, с каждым новым президентом резко меняющая свои планы в космосе, — партнер для российской космонавтики менее надежный, чем российское Министерство обороны. Да, МО всегда может сократить запуски своих спутников, но не может вовсе от них отказаться — без этого оно будет слепым в случае большой войны. А вот Штаты вполне могут отказаться от окололунной станции вовсе — им не впервой. Поэтому призрак «Ангары» еще долго будет бродить где-то рядом с проектом российского сверхтяжа.

Ракета-носитель «Энергия»

Основные характеристики РН «Энергия»

Стартовая масса

2400 т
в том числе масса ОК (полезного груза) 105 т
Вид топлива
Блок Ц кислород-водород
Блок А кислород-керосин
Габаритные размеры РН
высота 60 м
ширина 18 м
Габаритные размеры блока Ц
длина 58,1 м
диаметр 7,7 м
Габаритные размеры блока А
длина 38,3 м
диаметр 3,9 м

Ракета-носитель (РН) «Энергия», создававшаяся как составная часть многоразовой космической системы (МКС) «Энергия — Буран», является универсальным средством выведения сверхтяжелого класса, способным доставлять на орбиты в околоземное космическое пространство крупногабаритные полезные грузы массой до 100 т на внешней подвеске.

Массы полезных грузов, выводимых:

  • на низкие орбиты ИСЗ — до 100 т
  • на геостационарную орбиту — до 20 т
  • на траекторию полета к Луне — до 32 т

РН «Энергия» обеспечивает всеазимутальность пусков, но за базовые орбиты, определяемые районами падения отработавших ракетных блоков I ступени, приняты орбиты с наклонением 51, 65 и 97°.

В создании комплекса «Энергия-Буран» участвовало 1206 предприятий и организаций, почти 100 министерств и ведомств, были задействованы крупнейшие научные и производственные центры России, Украины, Белоруссии и других республик СССР.

Состав

Двухступенчатая РН «Энергия» выполнена по пакетной схеме с параллельным расположением ступеней и боковым расположением полезного груза, в которой четыре боковых ракетных блока I ступени (блоки А) располагаются вокруг центрального ракетного блока II ступени (блока Ц). РН устанавливается на стартово-стыковочный блок (блок Я), предназначенный для ее стыковки с пусковой установкой (ПУ) стартового комплекса и обеспечения силовых, пневмогидравлических и электрических связей РН с ПУ и комплексом наземного оборудования при подготовке к пуску.

Стартово-стыковочный блок служит опорным силовым элементом при сборке и транспортировке РН. После пуска ракеты стартово-стыковочный блок остается на пусковом устройстве и может использоваться повторно.

Двигательные установки

Двигательная установка РН «Энергия» состоит из четырех четырехкамерных кислородно-керосиновых двигателей РД-170 (по одному на каждом из четырех блоков I ступени ракеты) и четырех однокамерных кислородно-водородных двигателей РД-0120 на центральном блоке II ступени, а также пневмогидросхемы, обеспечивающей их функционирование. Двигатели РД-170, специально разработанные для РН «Энергия», обладают рекордными параметрами и не имеют аналогов за рубежом.

Все двигатели начинают работать со старта, причем запуск двигателей второй ступени происходит с некоторым опережением (8 с) запуска двигателей первой ступени. За это время система диагностики проводит заключительные проверки и дает «разрешение» на запуск двигателей первой ступени, таким образом исключается старт РН с неисправным двигателем. Широкие диапазоны регулирования тяги двигателей и массового соотношения компонентов топлива, поступающего в камеры, обеспечивают реализацию наиболее оптимальных параметров движения РН и синхронизацию опорожнения топливных баков. РН на активном участке полета управляется и стабилизируется путем отклонения вектора тяги двигателей I и II ступеней в двух плоскостях. Для этого двигатели имеют узлы качания и систему высокоточных рулевых приводов, обеспечивающих качание каждого двигателя II ступени и четырех камер двигателя I ступени. Рулевые приводы развивают тяговые усилия около 50 тс на I ступени и около 33 тс на II ступени и действуют с точностью 1 % от диапазона перемещения приводов.

Система управления

Система автономного управления РН «Энергия» на базе бортового цифрового вычислительного комплекса обеспечивает высокую точность выведения полезного груза в заданную область и широкие возможности РН по выходу из нештатных ситуаций, в том числе и при отказе одного из двигателей РН. Высокая степень автоматизации позволила учесть возможность многих нештатных ситуаций — выход из них заранее заложен в программы. Иными словами, пятьсот нештатных ситуаций превратились в штатно-заложенные. В самых сложных нештатных ситуациях автоматика приводит ракету в безопасное состояние, и она останется в нем, пока не будет принято необходимое решение.

При наличии в составе полезного груза элементов, сбрасываемых на активном участке полета, система управления формирует команду на их сброс, исходя из условия обеспечения падения отделяемых элементов в заданном районе. Отделение боковых ракетных блоков от центрального при израсходовании компонентов топлива в одном из блоков происходит по команде системы управления с помощью ракетных двигателей на твердом топливе.
Система пожаро- и взрывопредупреждения предназначена для повышения безопасности работ на стартовой позиции и предупреждения взрыва РН в полете при аварийных утечках водорода и кислорода из центрального блока.

Система аварийной защиты двигателей РН контролирует их параметры в процессе запуска и работы и позволяет произвести выключение аварийного двигателя до его разрушения, а при некоторых условиях — и выключение диаметрально противоположного двигателя, нормально работающего. Все это предупреждает развитие аварии на борту РН и позволяет продолжить управляемый полет.

Ракетные блоки

Особое место среди проектно-конструкторских решений занимает ракетный блок I ступени. В соответствии с тактико-техническим заданием МКС «Энергия — Буран» должна быть многоразовой и использоваться в полете не менее 10 раз. В результате всесторонних исследований была выбрана парашютно-реактивная схема возвращения блока после его отделения от РН. Возвращение и повторное использование блоков — это сложная научно-техническая задача, которую предполагалось решать последовательно, по мере проведения экспериментальной отработки. При первых летных испытаниях блоки А в составе РН не оснащались средствами возвращения, а использовались лишь отдельные системы для их отработки.

Важным фактором, повлиявшим на успешную реализацию программы создания ракетного блока А, стало то, что параллельно с работами НПО «Энергия» по созданию РН «Энергия» в КБ «Южное» (г. Днепропетровск, генеральный конструктор В.Ф. Уткин) разрабатывалась РН среднего класса «Зенит». Ракетные блоки обеих РН должны были быть максимально унифицированными. Унификация предусматривалась по размерам топливных баков, применяемым конструкционным материалам, по двигателю и большинству агрегатов автоматики. Опережающие сроки создания РН «Зенит» сделали возможным во многом распространить на блок А результаты наземной и летной отработки блока I ступени РН «Зенит». Изготовление модульной части блока А осуществлялось «Южмашзаводом» (г. Днепропетровск, директор Л.Д. Кучма). Изготовление хвостового и носового отсеков и сборку блоков А производил Завод экспериментального машиностроения (г. Калининград Московской обл., директор А.А. Борисенко).

Самым сложным и трудоемким в РН «Энергия» являлся центральный блок (блок Ц). Огромные размеры, обилие трубопроводов, сварных стыков, кабелей, агрегатов привели к тому, что цикл его изготовления составлял полтора года. Головным заводом по изготовлению центрального блока и сборке РН «Энергия» был определен Куйбышевский завод «Прогресс». Крупногабаритные отсеки центрального блока транспортировались на полигон с завода-изготовителя специально доработанным самолетом 3М-Т, где осуществлялась его окончательная сборка.

Стартовый комплекс

Учитывая многоразовость использования комплекса, было уделено значительное внимание средствам подготовки комплекса к пуску на объектах полигона. Для выполнения программы «Энергия — Буран» было принято решение создать универсальный комплекс стенд-старт (УКСС), дооборудовать и переоборудовать стартовый комплекс (СК), созданный ранее по программе Н1-Л3, создать посадочный комплекс (ПК) ОК, а также предусмотреть запасные аэродромы на территории страны на случай незапланированной посадки ОК.

Кроме этого, для обеспечения доставки и сборки комплекса «Энергия — Буран» были разработаны, изготовлены и смонтированы подъемно-транспортные устройства, реконструированы и построены новые транспортные магистрали.

Испытания

В декабре 1982 года в монтажно-испытательном корпусе была проведена первая сборка «пакета» РН — экспериментальной технологической ракеты, на которой были проведены динамические испытания и примерочные работы с системами наземного оборудования УКСС.

С марта по октябрь 1985 года на УКСС были проведены «холодные» стендовые испытания центрального блока, при которых была отработана технология заправки компонентами топлива, включая заправку переохлажденным жидким водородом. Затем были проведены два огневых испытания блока.

При первом огневом испытании (по программе 20 секунд) через 2,58 секунды после начала запуска ДУ прошла команда «Автоматическое прекращение подготовки» из-за медленного набора оборотов турбонасосным агрегатом одного из двигателей, одновременно было зафиксировано падение управляющего давления гелия в нескольких магистралях пневматической сети. При последующем осмотре ракеты было выявлено разрушение одной пневмомагистрали (трубки диаметром 20 мм), что потребовало проведения ряда мероприятий по повышению надежности.

Второй огневой запуск ракеты длительностью 390 с прошел без замечаний.

Залогом успеха создания РН «Энергия» стал большой объем наземной экспериментальной отработки конструкции, проверка функционирования всех ее систем и агрегатов. Летными испытаниями только подтверждались заданные характеристики. Всего по РН «Энергия» были проведены испытания на 232 экспериментальных установках и 30 прочностных сборках, что соответствовало изготовлению четырех полных комплектов штатной РН.

Пуски

Первый пуск ракеты-носителя был проведен с УКСС 15 мая 1987 года в 21 ч 30 мин по московскому времени. Вместо орбитального корабля «Буран» в качестве полезной нагрузки был использован макет космического аппарата «Скиф-ДМ». Пуск прошел успешно. Изменение всех параметров движения ракеты по времени полностью соответствовало данным предварительного моделирования.

Первый успешный пуск ракеты «Энергия» подтвердил, что создана универсальная РН «Энергия» сверхтяжелого класса, не имеющая по своим возможностям аналогов в мировом ракетостроении.

Второй пуск РН «Энергия», на этот раз с ОК «Буран» намечался на 29 октября 1988 года. Подготовка к запуску проходила успешно, метеоусловия были благоприятными, скорость ветра не превышала 1 м/с. Все команды по циклограмме предстартовой подготовки исполнялись нормально, оставалось отвести от ОК «Буран» переходный стыковочный блок, но за 51 с до запуска двигательных установок РН «Энергия» автоматизированная система подготовки пуска выдала команду «Автоматическое прекращение пуска». Государственная комиссия приняла решение отложить старт и слить низкокипящие компоненты топлива из ОК и РН. Анализ показал, что отбой запуска произошел из-за несвоевременного отвода платы системы азимутального наведения (прицеливания) РН и, следовательно, задержки с отводом фермы, на которой она располагалась. После устранения всех замечаний и докладов о готовности к повторному запуску было принято решение о проведении повторной предстартовой подготовки и запуске 15 ноября 1988 года в 6 часов утра московского времени.

Перенос пуска совпал с резким изменением погодных условий: 15 ноября 1988 года они были на грани установленных ограничений на пуск — порывы ветра достигали 20 м/с, что превышало установленные ограничения. Пуск прошел без замечаний. Все системы в полете работали нормально. Корабль был выведен на орбиту с максимальной высотой 263 км и минимальной высотой 251 км. Общее время полета ОК «Буран» составило 206 мин. Проделав все предпосадочные маневры, он вышел точно на посадочную полосу, приземлился, пробежал 1620 м и остановился посреди посадочной полосы. Боковое отклонение составило всего 3 м, а продольное — 10 м при скорости встречного ветра 17 м/с.

Впервые в мировой практике была проведена полностью автоматическая посадка космического аппарата такого класса.

Проблемы

При создании РН, построенной по схеме, существенно отличающейся от ранее реализованных, пришлось столкнуться с множеством сложных научно-технических и организационных проблем. Среди проблем, решенных в процессе создания МКС «Энергия — Буран» были:

  • разработка схемы РН, на базе которой возможно построение целого ряда РН не только разной грузоподъемности, но и различного типа выводимых на орбиту грузов, в том числе многоразовых орбитальных кораблей;
  • создание крупногабаритного с высокой степенью массового совершенства кислородно-водородного блока II ступени (блока Ц), позволяющего его использование в качестве базового при разработке перспективных ракетно-космических комплексов;
  • освоение технологии работ с переохлажденным жидким водородом и средств обеспечения безопасности при его крупномасштабном применении, а также использование переохлажденного жидкого кислорода и охлажденного керосина;
  • нейтрализация выбросов непрореагировавшего водорода в процессе запуска двигателей II ступени;
  • разработка и внедрение новых конструкционных материалов, обладающих повышенными физико-механическими свойствами, новых теплоизоляционных и теплозащитных покрытий, обеспечивающих необходимые тепловые режимы в экстремальных температурных условиях, а также антистатических покрытий с заданными характеристиками проводимости;
  • упрочнение алюминиевого сплава при криогенных температурах и создание стенда криогенно-статических испытаний;
  • освоение технологии изготовления крупногабаритных вафельных конструкций, топливных баков большого диаметра с внедрением электронно-лучевой сварки, обеспечение чистоты топливных емкостей и неразрушающего контроля качества приклеивания теплоизоляции и теплозащиты;
  • определение акустических характеристик без проведения огневых технологических испытаний;
  • обеспечение прочности крупногабаритных конструкций РН в условиях существенного перепада температур в процессе стоянки и заправки;
  • решение вопросов транспортировки крупногабаритных элементов конструкций РН самолетом-транспортировщиком 3М-Т;
  • создание универсального комплекса стенд-старт, обеспечивающего экспериментальную огневую отработку и пуск РН, экспериментальной базы для отработки универсальных РН и их составных частей и разработки экспериментальных установок;
  • создание производственной базы на полигоне с оборудованием технического комплекса и автоматизированной системы управления подготовкой и пуском.

Одной из серьезных проблем, которая была успешно решена, являлась проблема электромагнитной совместимости всех радиосистем (бортовых и наземных), работавших на участке выведения. Всего на этом участке было задействовано 419 радиоэлектронных средств.

Перспективы

Опыт создания РН такого класса может быть с большим экономическим эффектом использован в других хозяйственных отраслях. В 1989 году НПО «Энергия» совместно со смежными организациями разработало каталог «Научно-технические достижения по системе „Энергия — Буран“ — народному хозяйству», в котором приведены около 600 предложений, реализация которых могла бы дать экономический эффект около 6 млрд. руб. (в ценах 1989 года).

Создание РН «Энергия» открывало перспективу на целый ряд глобальных проектов, представляющих огромную международную значимость. В НПО «Энергия» в период 1987-1993 годы были проведены проектные проработки по космическим комплексам, базирующимся на РН «Энергия», для решения задач:

  • восстановления озонового слоя Земли;
  • удаления радиоактивных отходов Земли за пределы Солнечной системы;
  • освещения приполярных городов;
  • создания крупногабаритных космических отражателей для ретрансляции энергии;
  • создания солнечного паруса для межпланетных полетов;
  • использования ресурсов Луны;
  • создания системы экологического контроля и обеспечения стратегической стабильности;
  • создания единой международной глобальной информационной системы;
  • удаления космического «мусора» с околоземных орбит;
  • изучения Галактики с помощью больших космических радиотелескопов.

Однако общий спад и развал российской промышленности самым непосредственным образом отразился на проекте «Энергия — Буран». В 1992 году Российское космическое агентство приняло решение о прекращении работ и консервации созданного задела. К этому времени был полностью собран второй экземпляр орбитального корабля и завершалась сборка третьего корабля с улучшенными техническими характеристиками.

Над советским проектом «Энергия-Буран» работали 1200 предприятий

Москва, 15 ноября 2018, 14:05 — REGNUM Сегодня исполняется 30 лет со дня исторического полёта многоразовой транспортной космической системы (МТКС) «Энергия-Буран», ставшей уникальной разработкой советской ракетно-космической промышленности.

МТКС «Энергия-Буран»

В день 30-летия полета космического корабля «Буран» научный руководитель направления прикладных исследований, генеральный директор Центральный научно-исследовательского института машиностроения в 2013 — 2014 гг. Николай Паничкин рассказал об истории создания проекта, сообщили в институте.

«Создание МТКС «Энергия-Буран» стало грандиознейшим проектом нашей страны, в его реализации принимали участие более 1200 предприятий различных министерств и ведомств Советского Союза. Особое место среди них занимает ЦНИИмаш — головной институт Министерства общего машиностроения СССР», — сказал учёный.

На институт были возложены задачи научно-технического сопровождения работ, координации и контроля создания системы. В 1977 году была создана Межведомственная экспертная комиссия по проблемам создания МТКС под руководством директора Ю.А. Мозжорина, в работе которой принимали участие более восьмисот учёных и специалистов многих отраслей промышленности СССР. Более двух тысяч рекомендаций комиссии были реализованы, что позволило успешно провести оба пуска РН «Энергия», второй из них — с корабля «Буран».

ЦНИИмаш не только разрабатывал концепцию создания и применения МТКС, но и обеспечивал проведение экспериментальной отработки, огромного массива расчётных исследований, выдавал заключения о технической готовности комплекса к лётным испытаниям.

Для контроля и управления полётом корабля «Буран» на всех участках его траектории был создан новый Центр управления полётом (ЦУП-Б), который обеспечивал связь со всеми составляющими инфраструктуры: космодромом Байконур, станциями слежения, спутниковой системой контроля и управления, запасными аэродромами посадки. Была проделана колоссальная работа по разработке необходимого программно-математического обеспечения процесса управления из командного пункта ЦУП-Б, в том числе и на случай нештатных ситуаций.

«Буран 2.0»: в России реанимируют программу космических «челноков»

Около одиннадцати тысяч испытаний были проведены по отработке аэродинамики. Участники проекта изготовили более восьмидесяти моделей для двухсот различных аэродинамических конфигураций ракетно-космической системы. В центре тепломассообмена отрабатывались: теплоизоляция криогенных баков, в том числе водородного, для впервые применяемого компонента маршевой двигательной установки; тепловая защита комплекса «Буран». Порядка 30 000 плиток теплозащитного покрытия различной формы крепилось на корпусе. Паничкин, пояснил, что отрыв двух-трёх из них мог привести к катастрофе, подобной той, которая случилась в 2003 году с космическим челноком «Колумбия».

«Не менее масштабными были работы в части прочности конструкций МТКС — 160 натурных сборок испытывалось на базе ЦНИИмаш, что составило 70% объёма испытаний всей системы. Особенно много вопросов было по отработке маршевых жидкостных двигателей, так как считалось, что темпы их разработки отстают от общего графика создания изделия в целом», — продолжает учёный.

Работу над маршевыми двигателями Паничкин назвал самой сложной составляющей всей системы и по условиям нагружения, и по стоимости, и по возможным отказам.

«Жидкостной двигатель РД170 тягой 800 тонн и сейчас остаётся самым совершенным и мощным в мире», — поясняет представитель ЦНИИмаш.

Одновременно создавался первый в стране мощный водородный двигатель РД0120. По обоим двигателям были колоссальные проблемы, вплоть до того, что в один из моментов возможность создания двигателя РД170 на самом высоком уровне вообще ставилась под сомнение, в связи с чем на РН «Зенит», составляющей основу боковых блоков РН «Энергия», начали прорабатываться варианты его замены на четыре ЖРД меньшей тяги.

«Положение спас В.Ф.Уткин, в то время генеральный конструктор КБ «Южное» (впоследствии стал директором ЦНИИмаш): «НПО «Энергомаш» — разработчик РД170 — никогда нас не подводил, и я уверен, что и сейчас они смогут успешно довести двигатель». Так оно и получилось. На настоящий момент эта конструкция уникальна, его производная — двигатель РД180 — закупается США, так как у них до сих пор нет ничего подобного», — объясняет учёный.

В ЦНИИмаш тогда была создана рабочая группа под руководством начальника Центра прочности А.В.Кармишина с привлечением специалистов других предприятий, которая активно участвовала в процессе обеспечения прочности элементов ЖРД.

За 2−3 года «прочнистам» и «двигателистам» удалось решить все проблемные вопросы, касающиеся обеспечения прочностных характеристик маршевых двигателей, в том числе турбонасосных агрегатов, крупногабаритного сопла РД0120 (диаметр на срезе — около трёх метров, работает в широком диапазоне разнообразных нагрузок: от старта на Земле и до окончания работы второй ступени РН в космосе) и многих других.

Работы по обеспечению прочности маршевых двигателей РН «Энергия», также как и работы по аэрогазодинамике, были удостоены Государственных премий СССР. За создание ЦУП-Б ЦНИИмаш получил премию Совета министров СССР.

Паничкин сообщил, что технологии отработки прочности, разработанные и применённые при испытаниях МТКС, затем были востребованы и с успехом использованы в Минатоме для обеспечения безаварийной эксплуатации коллекторов парогенераторов атомных станций, для переработки и консервации радиоактивных отходов, а также в Минтрансе для создания системы диагностики, ремонта и изготовления новых, с существенно повышенным ресурсом, запорных металлоконструкций гидротехнических сооружений. Этим была предотвращена возможность крупных техногенных катастроф как в России, так и за рубежом.