Звуковая пушка направленного действия своими руками

Содержание

Аудиогаджет специального назначения: “тихий” голос “Медузы”, “Шепот” щитов и 162 дБ от LRAD

На этот раз речь пойдет о применении звука в качестве оружия. В этой теме много интересного, разработки велись с начала 40-х, и поэтому рассказать обо всём в одной статье не удастся. Я постарался выбрать наиболее заметные и неординарные проекты, о которых можно будет подискутировать в комментах.

Несмотря на вполне реальные результаты, эта тема часто является поводом для информационных спекуляций, фейков и прочих малоприятных вещей, (см. “коричневая нота”, “частота смерти” и т. п.). Этот пост будет посвящен только реально существующим проектам и перспективным исследованиям вооружений такого типа, мифы и фейки я трогать не стану.
Немного позже, в цикле “Аудиобубен лейтенанта Шмидта” выйдет отдельный пост с разбором наиболее популярных баек о звуковом оружии.

Звуковые пушки

Сложно сказать точно, когда начинается история использования звука в качестве оружия. Боевые барабаны известны у множества народов, а с появлением огнестрельного оружия вплоть до конца 19-го столетия громкий звук выстрела считался его достоинством.
Если говорить о первых известных попытках создать специфическое звуковое оружие, то следует упомянуть немецкого ученого, доктора Ричарда Валлаушека и его акустическую пушку, которая была испытана в Австрийском Тироле в 1944-м году (в перспективе истории этого устройства будет посвящен отдельный материал). Пушка Валлаушека не была доведена до серийного производства, но его идеи нашли продолжение в США, где были разработаны т.н. звуковые прожекторы.

Ричард Валлаушек
Наиболее успешным, серийно выпускаемым и часто упоминаемым в СМИ оружием этого типа является LRAD (Long Range Acoustic Device) — узконаправленный, мощный акустический излучатель, разработанный компанией American Technology Corporation в 2000-м году. Устройство было разработано командой инженеров под руководством конструктора нелетального вооружения, известного изобретателя и руководителя компании Вудди Нориса (Elwood Norris).

Вудди Нориса
Изначально устройство позиционировалось как средство разгона демонстраций. В дальнейшем его функционал расширили и признали эффективным в качестве защиты от нападения террористов, пиратов, вспомогательного средства при ведении боя в городской местности и как средство усмирения агрессивно настроенной толпы.

В оружии, как понятно из названия, применяется поражение цели силой звука. Так рабочее звуковое давление (SPL) различных моделей LRAD на дистанции поражения составляет от 136 до 162 дБ. В качестве сравнения часто приводят SPL шума от работающих двигателей пассажирского лайнера, составляющий 120 дБ, давление при использовании “Стены звука” Grateful Dead — 110 дБ, SPL при котором повреждаются барабанные перепонки — 130 дБ.

Диапазон рабочих частот, которые были выбраны для поражающего звукового сигнала, составляет от 2,1 до 3,1 кГц. Чаще всего применяется частота 2,5 кГц, при этом громкоговоритель способен создавать звуковой луч от 30-60°, что позволяет избирательно использовать систему. Также LRAD можно применять в качестве банальных громкоговорителей, которые используются для оповещений из цикла: “Молодые люди — расходитесь! Перестаньте громить биотуалеты и никто не пострадает!”.


LRAD оказывает как психологическое, так и соматическое поражающее действие. Поражение устройством может вызвать: ощущение страха, психоэмоциональную дестабилизацию цели, острую боль в ушах, почти гарантированное повреждение барабанной перепонки, дезориентацию, головокружение, чувство тошноты, вплоть до рвоты. У людей с лабильной психикой могут развиться панические атаки.

Было разработано несколько вариантов LRAD с разными масса-габаритными характеристиками, мощностью и дальностью поражения. Гуманные противники оружия утверждают, что мощные модификации LRAD способны повреждать внутренние органы. Ими также утверждается, что воздействие LRAD может быть летальным.

Такие выводы делаются на основе исследований, в которых проводились опыты над животными. Но дело в том, что в этих исследованиях эффективно влияли на внутренние органы волны вне слышимого спектра. Например, ультразвук высокой интенсивности (в диапазоне от 700 кГц до 3,6 МГц) вызывал повреждение кишечника и легких у мышей. Также известно, что после виброакустической стимуляции у животных возникали аритмии, трепетание предсердий и брадикардия.
За время существования LRAD был неоднократно применен в полицейских и военных (Ирак, Афганистан, Сирия) операциях, наиболее известными пользователями являются армия и полиция США, ФБР, американские частные военные компании, ВМФ Сингапура, Полиция Грузии, Береговая охрана Вьетнама, Береговая охрана Японии, ВМС Сенегала, Того и Кот-д’Ивуара и др. Всего 24 государства и около 100 частных компаний, как правило, морских.
Одним из самых известных случаев успешного применения LRAD является отражение атаки сомалийских пиратов на круизный лайнер Seabourn Spirit в 2005-м году. Когда LRAD обратил нападавших в бегство. Стоимость устройства находившегося на судне составляло $ 30 000.
Также известен инцидент с танкером MV Biscaglia в 2008 году, оборудованным LRAD, который был захвачен пиратами. По одним данным, команда не успела использовать излучатели в бою против пиратов, вооруженных РПГ-7 и АК-74, по другим — пираты использовали наушники, как средство индивидуальной защиты. В 2007-м г. LRAD применяла грузинская полиция против демонстрантов в Тбилиси.

Безмолвный крик медузы и горячие головы слышат лучше

Для создания акустического оружия пытаются активно применять микроволновый слуховой эффект (Microwave Auditory Effect). Этот эффект заключается в том, что под воздействием СВЧ излучения внутри нашего черепа возникают звуки и мы их слышим без каких-либо приборов. Впервые этот эффект был замечен сотрудниками радарных станций во время Второй мировой войны. Они жаловались на появление посторонних шумов вблизи мощных излучателей микроволн.
В 1961-м году эффект описал американский нейрофизиолог Аллан Фрей. Он опубликовал подробную статью о явлении в журнале «Journal of Applied Physiology», в которой доказал, что под воздействием импульсного и модулированного микроволнового излучения в тканях вокруг улитки происходит его поглощение. При этом ткани нагреваются и расширяются под воздействием тепла. Этот процесс в свою очередь приводит к появлению волн давления, т.е. звука. Учитывая, что процесс происходит интракраниально, окружающие никаких звуков не слышат.
Alan H. Frey
Фрей использовал частоту повторения 50 Гц и длительность импульса от 10 до 70 микросекунд. Фрей обнаружил, что громкость, воспринимаемая объектом воздействия, связана с пиковой плотностью мощности, а не со средней, как полагали до него. При частоте 1,245 ГГц пиковая плотность мощности для восприятия была ниже 80 мВт/см кв. Фрей также отметил, что переданный сигнал может воспринимать как шумы различного характера, а также как ощущение штырей и игл в голове.
С 1970-х в США велись работы по созданию аппаратуры, которая позволяла бы намеренно формировать звуки внутри головы. Изначально предполагалась возможность использовать такое устройство в мирных целях, как слуховой аппарат и средство связи, однако пагубное влияние микроволнового излучения ограничило интересы разработчиков созданием нелетального оружия. В 1989 году появляется американский патент № 4,877,027, в котором описывается устройство, способное передавать звук посредством микроволн.
В 1991-м году Российский Институт теоретической и экспериментальной биофизики РАН выпускает брошюру “Физические основы слухового эффекта СВЧ”, где русским по белому пишет, что в результате экспериментов установлено, что импульсное СВЧ-поле возбуждает в тканях около улитки акустические колебания, достигающие слуховых центров. В основу брошюры положены работа В. В. Шорохова «Механизм слухового эффекта импульсных полей СВЧ» 1988 г и исследования Р. Э. Тиграняна. Как и Фрей в 60-х, советские ученые отмечали, что в зависимости от параметров передатчика испытуемые слышат шипение, гудение, щелчки, стук, а также могут испытывать ощущение инородных тел в голове и дискомфорт.
В ходе исследований, проводившихся в США и СССР, было доказано, что при изменении модулирующего сигнала можно передавать информацию в виде отдельных слов, фраз и звуков. В зависимости от параметров модулирующего сигнала, звук переданных через волны СВЧ может раздражать, вызывать тошноту и рвоту, а также приводить к потере сознания и способности сопротивляться.
В 1974 году Кеннет Фостер из Университета Пенсильвании успешно провел эксперимент по передаче модулированного речью сигнала. В своем исследовании он отметил, что для такой передачи необходима гипотетически опасная плотность потока энергии. Известна также статья 1975 года, в которой нейропсихолог Дон Юстесен говорит о воздействии излучения на восприятие человека. В этой статье, упоминается об эксперименте Джозефа Шарпа и Марка Гроува в Исследовательском институте армии им. Уолтера Рида, который также прошел 1974-м.
В ходе исследования, Шарп и Гроув сообщают о том, что из переданных при помощи модулированных голосом микроволн десяти слов были узнаны девять. Уровни излучения при этой передаче приближались к 10 мВт/см², которые являются порогом безопасного воздействия. При более низкой плотности узнаваемость речевой информации снижалась. Многие исследователи отмечают, что при таких условиях возможно повреждение мозга от термических эффектов СВЧ-излучения.
В 2004-м году на основе эффекта компанией WaveBand Corporation была создана экспериментальная боевая система Mob Excess Deterrent Using Silent Audio или MEDUSA, т.е. «Мобильное превосходящее сдерживание с использованием безмолвного аудио».
Разработчики добились возможности вызывать при помощи устройства ощущение сильного дискомфорта, а также “выключения” (“выведения из строя”) отдельных лиц или группы. В 2005-м году корпорацию WaveBand купила компания Sierra Nevada и на 3 года закрыла тему по разработке MEDUSA. В 2008-м ряд СМИ опубликовали информацию о том, что Sierra Nevada занимаются дальнейшей разработкой темы.
По описанию разработчиков, в результате воздействия MEDUSA в голове цели невидимый для окружающих луч СВЧ-излучения создает громкий звук, напоминающий крик, который продолжается пока человек находится в зоне воздействия устройства. Звук нельзя прекратить, закрыв уши. Серийно устройство не выпускалось, данных о поставке опытных образцов в открытых источниках нет.
Ken Foster, professor of bioengineering at University of Pennsylvania
Кеннет Фостер (см. выше) и профессор Вашингтонского университета Билл Гайснизили подвергли резкой критике эффективность предлагаемого устройства и выразили сомнение в его нелетальности. Фостер отметил, что в связи с особенностями человеческой биофизики устройство: «убьет вас раньше, чем вас беспокоит шум». Гайснизили подтвердил оценку Фостера и сказал, что: «от звука не будет никакой опасности, по сравнению с той, которая будет исходить от тепла».
Существует мнение, что эти оценки похоронили проект, однако официально его не прекращали и не закрывали. Просто перестали пиарить в СМИ. Есть также суждения относительно того, что критика была спланированной, а проект решили продолжать “тихо”.

Инфразвук и “Шепот” для разгона демонстрантов

С влиянием инфразвука связано больше всего мифов, однако это не значит, что его нельзя использовать в качестве оружия. Эффекты волн низкой частоты главным образом психологические. С инфразвуком связывают усиление эмоций и формирование чувства страха.
Вопрос о влиянии инфразвука на психику не стоит — он влияет, но в разных исследованиях по разному описываются эффекты от его применения. Так одни исследователи утверждают, что инфразвуковые колебания вызывают “ужас, панику и смятение”, другие, что “усиливают существующий эмоциональный фон”.
Также известно, что, согласно исследованиям NASA, колебания с частотой 19 Гц, источником которых являются двигатели ракеты, воздействуют на глазные яблоки и способны вызывать расстройства зрения у астронавтов, в том числе формировать различного рода видения.
Существует также мнение, что инфразвук (равно как и ультразвук) способен разрушительно воздействовать на внутренние органы человека резонансными частотами. Эта гипотеза была частично опровергнута учеными Американского института ультразвука в медицине (AIUM).
Их исследования показали, что не зафиксировано доказанных биологических эффектов, связанных с несфокусированным звуковым пучком с интенсивностью ниже 100 мВт/см² SPTA или сфокусированными звуковыми пучками ниже уровня интенсивности 1 Вт/см² SPTA. Это касается как инфразвука с ультразвуком, так и слышимого спектра.
На эффектах инфразвука основано современное российское нелетальное оружие, названное “Шепот”. Устройство представляет собой щит сотрудника правоохранительных органов, с вмонтированным в него излучателем инфразвуковых колебаний.
Устройство было разработано в 2014-м году и в 2015-м поступило на вооружение в МВД, будучи предварительно протестировано в УФСИН. В 2016-м появились сообщения, что устройство будет также использовать Росгвардия. Известно, что первые 5 щитов обошлись МВД в 7,5 миллионов рублей, о чем сообщал “Техноомск”.
Также стоимость спецсредства светилась в ЖЖ, где упоминалась сумма в 1 513 384 рублей 57 копеек за один комплект. В 2016-м году МВД России был объявлен конкурс на похожую мобильную систему большей мощности, размещенную на прицепе, о чем соообщал @marks . Начальная цена контракта составляла 5,1 млн. рублей. Известно также, что на закупку “Шепота” для росгвардии в этом году планировали потратить 62 миллиона рублей.
Где проходила разработка устройства неизвестно, но ещё 2015-м были опубликованы некоторые его ТТХ. Так известно, что “Шепот” генерирует звуковые колебания от двух излучателей, которые образовывают нелинейно-параметрическую область инфразвукового воздействия. О частоте колебаний в ТТХ не сказано, но известно, что это инфразвук. Средняя величина акустического давления, которое способен создавать “Шепот” на расстоянии 10 м, составляет 120 дБ, время работы устройства от аккумулятора достигает 50 минут, время непрерывного излучения — 30 секунд, а интервал между периодами воздействия — 15 секунд. Данных о боевом и экспериментальном применении устройства в открытых источниках нет.

Итог

В отличие от распространенных мифов звуковое оружие не взрывает головы, не настроено на “частоту смерти” и не способно вызвать непроизвольный акт дефекации. При этом исследования, которые ведутся в этой области, как видно, привели к ощутимым результатам. Некоторые существующие образцы уже выпускаются серийно и массово используются полицией и военными. Я описал наиболее заметные, на мой взгляд, разработки в этой области. Я ещё вернусь к этой теме, так как уместить все интересное в один материал достаточно тяжело. Буду признателен за ваши мнения в комментариях.
Для подготовки использован фотоконтент и материалы:
patents.google.com/patent/US4877027A/en
boeing-is-back.livejournal.com
twower.livejournal.com
defendingrussia.ru
howgreenisthis.org
www.ted.com
slavaland.ru

masterok

Любите громко слушать музыку? Здорово. Только не делайте звук громче 185 децибелов, это считается смертельным порогом громкости для человека.

Слишком громкий звук приводит к воздушной эмболии — проникновению пузырьков в артерию и её закупорке. В итоге кровь перестаёт поступать к сердцу и мозгу.

Чтобы вы понимали, сколько это, 185 децибелов, приведу некоторые цифры. Отбойный молоток даёт примерно 100 Дб (если стоять вблизи), бензопила — около 120 Дб, а звук в 150 Дб можно прочувствовать, стоя рядом с турбиной взлетающего самолёта.

Звуковые волны и их использование в военных целях издавна привлекали внимание специалистов. Еще в период перед Второй мировой войной в ряде стран, в том числе и в Советском Союзе, разрабатывались звукометрические системы засечки местоположения артиллерийских батарей противника по звуку их выстрелов с последующим нанесением по ним ударов. Такие звукометрические системы имели, по существу, пассивный, оборонительный характер.

Давайте теперь про это подробнее …

Что ЭТО такое

Уже в 1960-1970 гг. стал проявляться интерес к использованию источников звука для создания наступательного оружия, способного наносить людям поражение различной степени тяжести или ограничивать их дееспособность. В ту пору работы над ним широко не афишировались, в значительной степени носили закрытый характер, и, судя по более поздним публикациям, особых достижений в научно-технической сфере тогда достигнуто не было.

Оказалось, что подобные устройства были слишком дорогими, довольно сложными и, главное, не обладали необходимой направленностью действия. Ситуация, связанная с акустическим оружием, существенно изменилась после окончания холодной войны, когда широким фронтом были развернуты в ряде стран (особенно в США, Великобритании, Японии) исследования по созданию «несмертельного оружия» (НСО). Различные модификации этого оружия стали рассматриваться как весьма действенное средство для нейтрализации значительных масс людей, особенно в тех случаях, когда необходимо избежать нанесения им смертельного поражения или тяжелых увечий.

При этом обращает на себя внимание, что во многих опубликованных до сего времени открытых материалах отсутствует серьезный научно-технический анализ многочисленных аспектов нового оружия. Более того, во многих публикациях, особенно принадлежащих перу журналистов, зачастую содержатся сенсационные сведения о боевых возможностях акустического оружия. Отчасти это объясняется тем, что, по оценкам специалистов, возможные последствия его применения против человека находятся в весьма широком диапазоне, простирающемся от возникновения дискомфорта, временной потери слуха вплоть до смертельного исхода.

На этом фоне особенно впечатляющим является научно-технический анализ физических процессов, лежащих в основе устройства и поражающего действия акустического оружия, а также состояния работ в этой области, проводимых в ряде стран, выполненный одним из видных ученых, сотрудником РУР-университета в Бохуме (Германия) доктором Юргеном Альтманном. Результаты его исследований были опубликованы в американском научном журнале «Science and Clobal Security» (2002, vol. 9).

Автору этих строк довелось в 1990 г. работать в составе Международной группы по разработке системы верификации обычных вооружений в Европе, научным руководителем которой был Альтманн. В своем исследовании Юрген Альтманн, указывая на весьма сложный, многоаспектный характер рассматриваемой проблемы, многообразие физических зависимостей различных параметров, лежащих в основе устройства источников звука, основное внимание сосредоточил на следующих основных направлениях: возможные источники излучений большой мощности; воздействие звука большой амплитуды на организм человека; распространение сильного звука в воздухе, возможные методы и средства защиты от него.

Уже сделано

При рассмотрении проблем создания и поражающего действия акустического оружия следует учитывать, что в общем случае охватывается три диапазона частоты: инфразвуковой — область частот ниже 20 Герц (Гц), хотя могут быть услышаны и звуки с более низкими частотами, особенно в тех случаях, когда звуковое давление достаточно велико; слышимый — от 20 Гц до 20 КГц. При этом установлено, что пороги слышимости, боли и негативное воздействие на организм человека уменьшаются с увеличением частоты звука от нескольких Гц до 250 Гц. Для частот свыше 20 КГц обычно используют термин «ультразвук». Такая градация определяется особенностями воздействия звука на организм человека и прежде всего на его слуховой аппарат.

В последние годы в США проводится широкий комплекс работ в области НСО в Центре исследований, разработки и обслуживания вооружений Армии (ARDEC) в арсенале Пакатинни (штат Нью-Джерси). Ряд проектов по созданию устройств, формирующих недифрагирующие акустические «пули», излучаемые антеннами большого диаметра, были выполнены Ассоциацией научного исследования и применения (SARA) в Хантинтон-Бич (штат Калифорния).

По замыслу создателей нового оружия, оно должно расширить возможный диапазон использования военной силы не только на поле боя, но и в ряде ситуаций, которые могут возникнуть в ходе проведения полицейских и миротворческих операций. Ведутся исследования по созданию инфразвуковых систем на основе использования больших громкоговорителей и весьма мощных усилителей (еще пока не созданных), требующих разработки эффективных мер охлаждения и новых материалов. Совместные работы SARA и ARDEC направлены на создание акустического оружия большой мощности и низкой частоты для защиты американских учреждений за границей.

Появились сведения о разработке высокочастотной недифрагирующей, непроникающей «пули», создающей плазму перед объектом. В Великобритании были разработаны излучатели инфразвука, оказывающие воздействие на слуховой аппарат человека и вызывающие резонанс внутренних органов, нарушающие работу сердца, вплоть до смертельного исхода. Это оружие применялось Англией в ходе борьбы с беспорядками в Северной Ирландии. Там также с подобными целями прошли испытания источники инфразвука на основе нелинейного наложения двух ультразвуковых пучков.

Для применения акустического оружия против войск непосредственно на поле боя были испытаны источники регулируемой низкой частоты, вызывающие «размывание» зрения, спазмы внутренних органов, вплоть до летального исхода. Были также сконструированы акустические излучатели большой мощности и низкой частоты, предназначенные для контроля над толпой, создания звуковых «барьеров» на периметрах объектов, запрета доступа посторонних на них с целью обеспечения надежной защиты американских учреждений (типа посольств) за границей.

Для поражения личного состава войск противника, находящегося в бункерах и на боевых машинах испытывались акустические «пули» очень низких частот, образующиеся при наложении ультразвуковых колебаний, излучаемых большими антеннами. По утверждению американских специалистов в области НСО Дж. и С. Моррис, в России также были получены довольно впечатляющие результаты по созданию подобного оружия. Они, в частности, заявили, что им демонстрировали действующее устройство, формирующее инфразвуковой импульс частотой 10 Гц, «размером с бейсбольный мяч», мощность которого была якобы достаточна для нанесения человеку тяжелого поражения, вплоть до летального исхода, на расстояниях в сотни метров. В ходе экспериментов также была исследована «разностная зона» от пересечения двух не слышимых поодиночке ультразвуковых пучков.

Рассматривая возможные источники сильных звуковых излучений, эксперты указывают на использование громкоговорителей, соединенных с усилителями на основе генераторов или мощных батарей. При этом для получения высоких значений звукового давления на открытом воздухе потребуется довольно большое число громкоговорителей, а типичные электрические мощности, подводимые к каждому из них, измеряются сотнями ватт, из которых всего лишь несколько процентов преобразуются в акустическую мощность вследствие несогласованности импедансов мембраны и воздушного пространства (импеданс — комплексное сопротивление, которое вводится при рассмотрении колебаний акустических систем). В том случае, если потребуется получение сильного шума, то он может быть создан при использовании для этой цели сирены или свистка.

Принцип действия сирены состоит в том, что в этом устройстве происходит модуляция воздушного потока путем поочередного открытия и закрытия отверстий. В качестве примера подобной сирены приводят систему мобильного акустического источника (СМАИ), сконструированного в Национальном центре физической акустики университета Миссисипи для Управления по окружающей среде поля боя исследовательской лаборатории Армии США. На нем был установлен рупор экспоненциальной формы длиной 17 м и диаметром 2,3 м, который может выдавать до 20 Квт акустической мощности.

Главная задача СМАИ состоит в проведении испытаний по прохождению звука в атмосфере на большие расстояния. В ходе дальнейших работ возможно ожидать создания мощных источников звука низкой частоты путем использования эффективных резонаторов, рупоров направленного действия и высоких значений источников энергии. Предварительные оценки таких устройств позволяют предполагать, что линейные размеры подобного излучателя с учетом дополнительного оборудования будут порядка одного метра и более, а массовые габариты — измеряться сотнями кг. Это означает, что все подобные источники звука будут либо стационарными, либо станут базироваться на вертолетах, бронированных машинах или на грузовом автотранспорте.

В связи с этим ведется разработка несмертельного акустического оружия для установки на вертолете с регулируемой частотой в пределах от 100 Гц до 10 КГц с радиусом действия до 2 км. В последующем планируется увеличить дальность до 10 км. На таком вертолете будет устанавливаться сирена, работающая от двигателя внутреннего сгорания с инфразвуковой мощностью во много киловатт, а также акустическое пучковое оружие, работающее на основе термоакустического резонатора с частотой от 20 до 340 Гц, предназначенное прежде всего для предотвращения несанкционированного доступа посторонних лиц на склады оружия массового поражения.

Для получения ультразвука высокой мощности возможно использование крупных вибрирующих дисков из пьезоэлектриков. В одном из подобных устройств был использован такой диск с дискретным изменением толщины, с помощью которого были получены уровни звука свыше 160 дециБелл (дБ) (при болевом пороге человеческого уха 137 дБ). Сильные низкочастотные колебания могут быть получены также аэродинамическими средствами путем турбулентного взаимодействия потока воздуха с резонаторами, что используется в свистках. Так, в одной из подобных конструкций поток воздуха из кольцевого отверстия попадает на острую круговую кромку, внутри которой находится цилиндрический резонатор. С помощью такого свистка возможно получение частоты в диапазоне от инфразвука до ультразвука, значение которой определяется размерами резонатора.

Специалисты указывают на возможность получения ударного импульса от взрыва. Установлено, что при взрыве заряда мощностью в 1 кг тротила возникает боль в ушах на расстоянии до 200 м, а смертельный исход наступает в пределах нескольких метров, что в общем соответствует традиционному обычному оружию. Возможно появление нового типа взрывного оружия, основанного на создании ударной волны направленного действия при распределении выделенной энергии по «линейному» закону (обратно пропорционально расстоянию), в отличие от сферического.

Более того, не следует исключать вероятность использования акустического воздействия на живую силу путем создания «цепочки» взрывов небольшой мощности, частота которых будет соответствовать инфразвуку. В этом случае величина акустической мощности может достигать мегаватт, а уровень звука вблизи источника — порядка 180 дБ. Для сравнения укажем, что максимальный уровень звука при выстреле из винтовки составляет около 159 дБ, а из пушки — 188 дБ.

При этом следует заметить, что Юрген Альтманн нередко довольно скептически относится к заявлениям некоторых специалистов; это особенно относится к рекламируемому ими действию на большие расстояния излучателей в инфразвуковой и слышимой области. Это, в частности, затрагивает и некоторые разработки SARA, которые становились достоянием гласности иногда без предварительного проведения объективной научно-технической экспертизы.

Для разгона плохо вооруженных толп, например, в Ираке, американцы применяют «верещалку» – металлическую коробку с мощным динамиком, создающую направленные звуковые волны частот, близких к ультразвуку. Звуковые волны складываются в ухе в пульсацию, неприятную для слуха и способную вызвать болевые ощущения, головокружение и тошноту, потерю ориентации в пространстве. Радиус эффективного воздействия «верещалки» (рис. 10.3) составляет (700¸800) метров.

Рис. 10.3. Ультразвуковые «верещалки», применяющиеся в Ираке американскими военными и местной полицией

В Ираке применялись и боевые инфразвуковые излучатели, ставшие безопасными для операторов. На нужное место направляют две волны с разных сторон, из разных установок. Волны сами по себе безобидны, но в месте их пересечения складываются в опасное излучение, вызывающее размывание зрения и спазмы внутренних органов, вплоть до физического уничтожения противника.

Американские солдаты в Ираке получили новое несмертельное оружие LRAD (Long Range Acoustic Device), передающее оглушительный шум в направленном луче – 150 децибел на частотах (2100¸3100) Гц (рис. 10.4). Подобные звуковые пушки США начали применять на военных кораблях с 2000 г., чтобы препятствовать приближению маленьких лодок на опасное расстояние. Теперь же разработчик LRAD, «Американская технологическая корпорация» (American Technology Corporation – АТС), заключила с армией $1.1–миллионный контракт на поставку мобильных систем морской пехоте. Официально LRAD еще не принята на вооружение – в Багдаде пройдут ее испытания. В Ираке система будет использоваться, как средство сдерживания, поскольку солдатам часто приходится иметь дело с разгневанными толпами людей. Эксперты считают, что хотя система и относится к несмертельному оружию, длительное воздействие звуковой пушки может быть чрезвычайно опасным для здоровья человека.

Еще один способ использования акустического оружия – щиты на дороге (рис. 10.5), испускающие инфразвук, которые легко заменяют баррикады.

Рис. 10.5. Щиты на дороге, испускающие инфразвук

В последние годы нелетальное звуковое оружие стало доступным для гражданских лиц и тут же доказало свою надежность. Корабли, проплывающие в неспокойных водах около Сомали, часто подвергаются атакам пиратов. В 2005 году ими было захвачено 25 судов. 5 ноября 2005 г. лайнер Seabourne Spirit едва не стал 26-м, если бы не новейшее оружие. Владельцы роскошного круизного судна не поскупились и поставили установку LRAD стоимостью около 30 тысяч долларов. Небольшой прибор весом 24 килограмма снабжен параболической антенной, излучающей звуковые волны с частотой (2.1¸3.1) кГц и мощностью 150 децибел. LRAD эффективно действует на расстоянии 300 метров, вызывая желание тут же убежать из «сектора обстрела». Пока пассажиры отсиживались в ресторане судна за несколькими переборками, экипаж отгонял захватчиков невыносимым звуком. В ярости пираты выстрелили по лайнеру из гранатомета, не причинив почти никакого вреда, и ретировались.

Создатели LRAD из American Technology Corporation разработали и более портативное звуковое оружие. «Ружье» размером с бейсбольную биту испускает «луч» мощностью около 140 децибел. Одного «выстрела» достаточно, чтобы на долгое время обезвредить любого мужчину. «Ружье» сейчас активно применяют группы захвата ФБР (рис. 10.6).

Рис. 10.6. Схема звукового ружья

Другая фирма (Compound Security Service) создала прибор Mosquito, излучающий неслышимые, но раздражающие людей звуки. Он стоит около 800 долларов и предназначен для того, чтобы изгонять хулиганов из каких-либо мест, не применяя к ним рукоприкладства.

Рис. 10.7. Прибор Mosquito

Дальность действия (15¸20) метров. Прибор уже купили многие владельцы магазинов и заведений по всей Великобритании (рис. 10.7).

Для разгона митинга в Тбилиси 7 ноября 2007 г. власти Грузии применили психотронное оружие – американский акустический генератор, вызывающий у людей чувство паники и психические расстройства. Генераторы были установлены на полицейских джипах и представляли собой шестиугольные щиты на подвижной стойке, издававшие резкий свист. Эти щиты, будучи направлены в сторону демонстрантов, обращали тех в бегство (рис. 10.8).

Рис. 10.8. Разгон митинга в Тбилиси 07.11.2007 г.

Работающая установка вызывает у человека острую боль в ушах, чувство необъяснимого неконтролируемого страха и панику.

Против израильских демонстрантов также было применено звуковое оружие. Как сообщили армейские источники и свидетели, 3 июня, при разгоне демонстрации в районе палестинской деревни Билин (Рамалла – Иудея) ЦАХАЛ впервые использовал новую уникальную технологию. Уникальная разработка израильских ученых представляет собой акустическую систему, излучающую болезненные звуковые волны. Официальные представители Армии обороны Израиля подтвердили использование новой тактики при разгоне демонстраций. По словам источников в пресс-службе, звуковые волны особой частоты способны разогнать любую агрессивно настроенную толпу. Технология разрабатывалась израильскими учеными около четырех лет, но в реальной ситуации была использована впервые. Сообщить какие-либо дополнительные подробности в ЦАХАЛе отказались. Фотограф Associated Press сообщил, что странного вида автомобиль ЦАХАЛа прибыл на место демонстрации против строительства забора безопасности практически к ее концу, когда демонстрация чуть было не переросла в открытое противостояние. Остановившись на расстоянии 500 метров от толпы, автомобиль выпустил по ней несколько звуковых волн, каждая продолжительностью около минуты. Несмотря на то, что звук не был громким, демонстранты были вынуждены закрыть уши руками. Через некоторое время демонстранты, пытавшиеся помешать строительству заградительного сооружения, были вынуждены разойтись.

Возможное поражающее действие акустического оружия

Рассматривая воздействие акустического оружия на организм человека, следует заметить, что оно весьма многообразно и охватывает широкий диапазон возможных последствий. В отчете SARA за 1996 г. даются некоторые обобщенные результаты проведенных исследований в этой сфере.

Так, указывается, что инфразвук на уровне 110-130 дБ оказывает негативное воздействие на органы желудочно-кишечного тракта, вызывает боль и тошноту, при этом высокие уровни беспокойства и расстройства достигаются при минутных экспозициях уже на уровнях от 90 до 120 дБ на низких чстотах (от 5 до 200 Гц), а сильные физические травмы и повреждения тканей имеют место на уровне 140-150 дБ. Мгновенные травмы, типа травм от воздействия ударных волн, происходят при звуковом давлении около 170 дБ. На низких частотах возбуждаемые резонансы внутренних органов могут вызвать кровотечение и спазмы, а в диапазоне средних частот (0,5-2,5 кГц) резонансы в воздушных полостях тела вызовут нервное возбуждение, травмы тканей и перегрев внутренних органов.

На высоких и ультразвуковых частотах (от 5 до 30 кГц) может быть создан их перегрев вплоть до смертельно высоких температур, ожоги тканей и их обезвоживание. На более высоких частотах или при коротких импульсах в результате кавитации могут образоваться пузырьки и микроразрывы тканей. При этом автор исследования оговаривается, что по его мнению, некоторые подобные утверждения об эффективности воздействия акустического оружия вызывают серьезные сомнения, в особенности это относится к инфразвуковой и слышимой области.

По его мнению, в отличие от ряда статей в оборонной прессе, инфразвук высокой мощности не оказывает столь высокого, как утверждается, воздействия на людей; болевой порог выше, чем в звуковом диапазоне, и пока еще нет надежных фактов относительно утверждаемого воздействия на внутренние органы и вестибулярный аппарат.

Подобные сомнения подтверждаются результатами подробного исследования всех видов несмертельного оружия, выполненного весьма авторитетной германской фирмой Даймлер-Бенц Аэроспейс (ДАСА) в Мюнхене по заказу Министерства обороны Германии, в котором «раздел по акустическому оружию также содержит ошибки». Это привело к тому, что германскому институту Фраунгофера по химической технологии было выдано задание на разработку прототипа акустического оружия и исследование эффективности сдерживания.

В то же время признается, что ударные волны взрывного характера, хотя их весьма условно можно отнести к акустическим, могут вызывать довольно разнообразные последствия. При их умеренно высокой силе (примерно до 140 дБ) появляется временная потеря слуха, которая может перейти в постоянную при более высоких значениях давления. Уровень звука свыше 185 дБ вызывает разрыв барабанных перепонок. При более сильных ударных волнах (около 200 дБ) начинается разрыв легких, а при уровне около 210 дБ наступает смертельный исход. При этом необходимо подчеркнуть, что поражающее воздействие акустического оружия в ощутимых масштабах было применено Англией в ходе борьбы с массовыми беспорядками в Северной Ирландии. В остальных случаях речь идет о проведении теоретических и лабораторных исследований, в ряде случаев на животных, на основании которых делались выводы о поражающем действии акустического оружия и давались рекомендации по защите от него.

Защита от звука большой интенсивности

В своем исследовании автор указывает, что как и для других видов несмертельного оружия, у акустического оружия существуют проблемы дозировки и восприимчивости, которые индивидуальны. Подвергнутые воздействию звука одной и той же интенсивности, одни люди могут лишиться слуха, в то время как другие претерпят лишь временный сдвиг порога слышимости. Практически все специалисты сходятся в том, что вследствие довольно высокой уязвимости слухового аппарата необходимо прежде всего обеспечивать его защиту.

Для защиты барабанной перепонки уха могут быть использованы резиновые наушники или простейшие «затычки», перекрывающие вход в звуковой канал, способные уменьшить силу звука на 15-45 дБ при частотах порядка 500 Гц и выше. При этом оказывается, что при более низких частотах (ниже 250 Гц) наушники менее эффективны. Для предохранения от воздействия импульсного звука на уровне 160 дБ и выше целесообразным является сочетание наушников и звукопоглощающего шлема, которое будет довольно эффективным в диапазоне 0,8-7 кГц, обеспечивая снижение давления звука на 30-50 дБ. Более сильное ослабление звука наружной защитой не обеспечивается.

Гораздо более сложной задачей является защита всего тела человека. Это возможно обеспечить путем создания герметизированных камер или оболочек, которые должны обладать достаточной жесткостью, чтобы они не вибрировали и не передавали колебания внутрь. Для создания защиты могут использоваться пористые и звукопоглощающие материалы. Однако при этом необходимо учитывать, что на низких частотах механизм поглощения теряет свою эффективность в том случае, когда толщина защитного слоя становится тоньше четверти длины звуковой волны (для 250 Гц это 0,34 м).

Полностью загерметизированный бронированный транспорт обеспечивает эффективную защиту от звуковых излучений низкой частоты. Обычный дорожный транспорт, не имеющий надежной изоляции, может пропускать внутрь низкочастотные колебания. При проникновении низкочастотного звука через щели и окна здания может возникнуть высокое внутреннее давление в результате комнатного резонанса. Это может возникнуть при использования источника звука с переменной частотой. Явление резонанса может быть использовано при осаде здания, в котором находятся террористы. В том случае, если используются высокие частоты, то металлические покрытия, стены и окна могут обеспечивать значительное ослабление звука.

В заключение следует подчеркнуть, что в отношении поражающего действия акустического оружия имеется еще немало «белых» пятен, научно-технический анализ которых еще ждет своих исследователей.

источники

Владимир Белоус — ведущий научный сотрудник Центра международной безопасности ИМЭМО РАН, генерал-майор в отставке.

Сила звука

Вот еще интересное и необычное оружие: вот такая Уточница — Дробовик, а вот Много маленьких смертей и Кривоствольное оружие. Вспомним еще про Стрелы апокалипсиса, а так же что такое Противовертолетные мины и Какой нож не является оружием ? Оригинал статьи находится на сайте ИнфоГлаз.рф Ссылка на статью, с которой сделана эта копия — http://infoglaz.ru/?p=75772Tags: Оружие Subscribe to Telegram channel masterok

Звук

У этого термина существуют и другие значения, см. Звук (значения).

Звук — физическое явление, представляющее собой распространение в виде упругих волн механических колебаний в твёрдой, жидкой или газообразной среде. В узком смысле под звуком имеют в виду эти колебания, рассматриваемые в связи с тем, как они воспринимаются органами чувств животных.

Как и любая волна, звук характеризуется амплитудой и частотой. Амплитуда характеризует громкость звука. Частота определяет тон, высоту (см. высота звука). Обычный человек способен слышать звуковые колебания в диапазоне частот от 16—20 Гц до 15—20 кГц. Звук ниже диапазона слышимости человека называют инфразвуком; выше: до 1 ГГц, — ультразвуком, от 1 ГГц — гиперзвуком. Громкость звука сложным образом зависит от эффективного звукового давления, частоты и формы колебаний, а высота звука — не только от частоты, но и от величины звукового давления.

Среди слышимых звуков следует особо выделить фонетические, речевые звуки и фонемы (из которых состоит устная речь) и музыкальные звуки (из которых состоит музыка). Музыкальные звуки содержат не один, а несколько тонов, а иногда и шумовые компоненты в широком диапазоне частот.

Понятие о звуке

Звуковые волны в воздухе — чередующиеся области сжатия и разрежения.

Звуковые волны могут служить примером колебательного процесса. Всякое колебание связано с нарушением равновесного состояния системы и выражается в отклонении её характеристик от равновесных значений с последующим возвращением к исходному значению. Для звуковых колебаний такой характеристикой является давление в точке среды, а её отклонение — звуковым давлением.

Если произвести резкое смещение частиц упругой среды в одном месте, например с помощью поршня, то в этом месте увеличится давление. Благодаря упругим связям частиц давление передаётся на соседние частицы, которые, в свою очередь, воздействуют на следующие, и область повышенного давления как бы перемещается в упругой среде. За областью повышенного давления следует область пониженного давления, и, таким образом, образуется ряд чередующихся областей сжатия и разрежения, распространяющихся в среде в виде волны. Каждая частица упругой среды в этом случае будет совершать колебательные движения.

В жидких и газообразных средах, где отсутствуют значительные колебания плотности, акустические волны имеют продольный характер, то есть направление колебания частиц совпадает с направлением перемещения волны. В твёрдых телах, помимо продольных деформаций, возникают также упругие деформации сдвига, обусловливающие возбуждение поперечных (сдвиговых) волн; в этом случае частицы совершают колебания перпендикулярно направлению распространения волны. Скорость распространения продольных волн значительно больше скорости распространения сдвиговых волн.

В философии, психологии и экологии средств коммуникации звук исследуется в связи с его воздействием на восприятие и мышление (речь идёт, например, об акустическом пространстве как пространстве, создаваемом воздействием электронных средств коммуникации).

Физические параметры звука

Колебательная скорость измеряется в м/с или см/с. В энергетическом отношении реальные колебательные системы характеризуются изменением энергии вследствие частичной её затраты на работу против сил трения и излучение в окружающее пространство. В упругой среде колебания постепенно затухают. Для характеристики затухающих колебаний используются коэффициент затухания (S), логарифмический декремент (D) и добротность (Q).

Коэффициент затухания отражает быстроту убывания амплитуды с течением времени. Если обозначить время, в течение которого амплитуда уменьшается в е = 2,718 раз, через τ {\displaystyle \tau } , то:

S = 1 τ {\displaystyle S={\frac {1}{\tau }}} .

Уменьшение амплитуды за один цикл характеризуется логарифмическим декрементом. Логарифмический декремент равен отношению периода колебаний ко времени затухания τ {\displaystyle \tau } :

D = T τ {\displaystyle D={\frac {T}{\tau }}}

Если на колебательную систему с потерями действовать периодической силой, то возникают вынужденные колебания, характер которых в той или иной мере повторяет изменения внешней силы. Частота вынужденных колебаний не зависит от параметров колебательной системы. Напротив, амплитуда зависит от массы, механического сопротивления и гибкости системы. Такое явление, когда амплитуда колебательной скорости достигает максимального значения, называется механическим резонансом. При этом частота вынужденных колебаний совпадает с частотой собственных незатухающих колебаний механической системы.

При частотах воздействия, значительно меньших резонансной, внешняя гармоническая сила уравновешивается практически только силой упругости. При частотах возбуждения, близких к резонансной, главную роль играют силы трения. При условии, когда частота внешнего воздействия значительно больше резонансной, поведение колебательной системы зависит от силы инерции или массы.

Свойство среды проводить акустическую энергию, в том числе и ультразвуковую, характеризуется акустическим сопротивлением. Акустическое сопротивление среды выражается отношением звуковой плотности к объёмной скорости ультразвуковых волн. Удельное акустическое сопротивление среды устанавливается соотношением амплитуды звукового давления в среде к амплитуде колебательной скорости её частиц. Чем больше акустическое сопротивление, тем выше степень сжатия и разрежения среды при данной амплитуде колебания частиц среды. Численно, удельное акустическое сопротивление среды (Z) находится как произведение плотности среды ( ρ {\displaystyle \rho } ) на скорость (с) распространения в ней звуковых волн.

Z = ρ c {\displaystyle Z=\rho c}

Удельное акустическое сопротивление измеряется в паскаль-секундах на метр (Па·с/м) или дин•с/см³ (СГС); 1 Па·с/м = 10−1 дин • с/см³.

Значение удельного акустического сопротивления среды часто выражается в г/с·см², причём 1 г/с·см² = 1 дин•с/см³. Акустическое сопротивление среды определяется поглощением, преломлением и отражением ультразвуковых волн.

Звуковое, или акустическое, давление в среде представляет собой разность между мгновенным значением давления в данной точке среды при наличии звуковых колебаний и статическим давлением в той же точке при их отсутствии. Иными словами, звуковое давление есть переменное давление в среде, обусловленное акустическими колебаниями. Максимальное значение переменного акустического давления (амплитуда давления) может быть рассчитано через амплитуду колебания частиц:

P = 2 π f ρ c A {\displaystyle P=2\pi f\rho cA}

где Р — максимальное акустическое давление (амплитуда давления);

  • f — частота;
  • с — скорость распространения ультразвука;
  • ρ {\displaystyle \rho } — плотность среды;
  • А — амплитуда колебания частиц среды.

На расстоянии в половину длины волны (λ/2) значение звукового давления из положительного становится отрицательным. Разница давлений в двух точках с максимальным и минимальным его значением (отстоящих друг от друга на λ/2 вдоль направления распространения волны) равна 2Р.

Для выражения звукового давления в единицах СИ используется паскаль (Па), равный давлению в один ньютон на квадратный метр (Н/м²). Звуковое давление в системе СГС измеряется в дин/см²; 1 дин/см² = 10−1Па = 10−1Н/м². Наряду с указанными единицами часто пользуются внесистемными единицами давления — атмосфера (атм) и техническая атмосфера (ат), при этом 1 ат = 0,98⋅106 дин/см² = 0,98⋅105 Н/м². Иногда применяется единица, называемая баром или микробаром (акустическим баром); 1 бар = 106 дин/см².

Давление, оказываемое на частицы среды при распространении волны, является результатом действия упругих и инерционных сил. Последние вызываются ускорениями, величина которых также растёт в течение периода от нуля до максимума (амплитудное значение ускорения). Кроме того, в течение периода ускорение меняет свой знак.

Максимальные значения величин ускорения и давления, возникающие в среде при прохождении в ней ультразвуковых волн, для данной частицы не совпадают во времени. В момент, когда перепад ускорения достигает своего максимума, перепад давления становится равным нулю. Амплитудное значение ускорения (а) определяется выражением:

a = ω 2 A = ( 2 π f ) 2 A {\displaystyle a=\omega ^{2}A=(2\pi f)^{2}A}

Если бегущие ультразвуковые волны наталкиваются на препятствие, оно испытывает не только переменное давление, но и постоянное. Возникающие при прохождении ультразвуковых волн участки сгущения и разрежения среды создают добавочные изменения давления в среде по отношению к окружающему её внешнему давлению. Такое добавочное внешнее давление носит название давления излучения (радиационного давления). Оно служит причиной того, что при переходе ультразвуковых волн через границу жидкости с воздухом образуются фонтанчики жидкости и происходит отрыв отдельных капелек от поверхности. Этот механизм нашёл применение в образовании аэрозолей лекарственных веществ. Радиационное давление часто используется при измерении мощности ультразвуковых колебаний в специальных измерителях — ультразвуковых весах.

Скорость звука

Средства звукового наблюдения, основанные на бинауральном эффекте Основная статья: Скорость звука

Скорость звука — скорость распространения звуковых волн в среде.

Как правило, в газах скорость звука меньше, чем в жидкостях.

Скорость звука в воздухе зависит от температуры и в нормальных условиях составляет примерно 340 м/с.

Скорость звука в любой среде вычисляется по формуле:

c = 1 β ρ {\displaystyle c={\sqrt {\frac {1}{\beta \rho }}}} ,

где β {\displaystyle \beta } — адиабатическая сжимаемость среды; ρ {\displaystyle \rho } — плотность.

Громкость звука

Основная статья: Громкость звука

Гро́мкость зву́ка — субъективное восприятие силы звука (абсолютная величина слухового ощущения). Громкость главным образом зависит от звукового давления, амплитуды и частоты звуковых колебаний. Также на громкость звука влияют его спектральный состав, локализация в пространстве, тембр, длительность воздействия звуковых колебаний, индивидуальная чувствительность слухового анализатора человека и другие факторы.

Генерация звука

Обычно для генерации звука применяются колеблющиеся тела различной природы, вызывающие колебания окружающего воздуха. Примером такой генерации может служить использование голосовых связок, динамиков или камертона. Большинство музыкальных инструментов основано на том же принципе. Исключением являются духовые инструменты, в которых звук генерируется за счёт взаимодействия потока воздуха с неоднородностями в инструменте. Для создания когерентного звука применяются так называемые звуковые или фононные лазеры.

Ультразвуковая диагностика

Основная статья: Ультразвук

Ультразвук — упругие звуковые колебания высокой частоты. Человеческое ухо воспринимает распространяющиеся в среде упругие волны частотой приблизительно до 16 Гц-20 кГц; колебания с более высокой частотой представляют собой ультразвук (за пределом слышимости).

Распространение ультразвука

Распространение ультразвука — это процесс перемещения в пространстве и во времени возмущений, имеющих место в звуковой волне.

Звуковая волна распространяется в веществе, находящемся в газообразном, жидком или твёрдом состоянии, в том же направлении, в котором происходит смещение частиц этого вещества, то есть она вызывает деформацию среды. Деформация заключается в том, что происходит последовательное разрежение и сжатие определённых объёмов среды, причём расстояние между двумя соседними областями соответствует длине ультразвуковой волны. Чем больше удельное акустическое сопротивление среды, тем больше степень сжатия и разрежения среды при данной амплитуде колебаний.

Частицы среды, участвующие в передаче энергии волны, колеблются около положения своего равновесия. Скорость, с которой частицы колеблются около среднего положения равновесия называется колебательной скоростью. Колебательная скорость частиц изменяется согласно уравнению:

V = U sin ⁡ ( 2 π f t + G ) {\displaystyle V=U\sin(2\pi ft+G)} ,

где V — величина колебательной скорости;

  • U — амплитуда колебательной скорости;
  • f — частота ультразвука;
  • t — время;
  • G — разность фаз между колебательной скоростью частиц и переменным акустическим давлением.

Амплитуда колебательной скорости характеризует максимальную скорость, с которой частицы среды движутся в процессе колебаний, и определяется частотой колебаний и амплитудой смещения частиц среды.

U = 2 π f A {\displaystyle U=2\pi fA} ,

Дифракция, интерференция

При распространении ультразвуковых волн возможны явления дифракции, интерференции и отражения.

Дифракция (огибание волнами препятствий) имеет место тогда, когда длина ультразвуковой волны сравнима (или больше) с размерами находящегося на пути препятствия. Если препятствие по сравнению с длиной акустической волны велико, то явления дифракции нет.

При одновременном движении в среде нескольких ультразвуковых волн в каждой определённой точке среды происходит суперпозиция (наложение) этих волн. Наложение волн одинаковой частоты друг на друга называется интерференцией. Если в процессе прохождения через объект ультразвуковые волны пересекаются, то в определённых точках среды наблюдается усиление или ослабление колебаний. При этом состояние точки среды, где происходит взаимодействие, зависит от соотношения фаз ультразвуковых колебаний в данной точке. Если ультразвуковые волны достигают определённого участка среды в одинаковых фазах (синфазно), то смещения частиц имеют одинаковые знаки и интерференция в таких условиях приводит к увеличению амплитуды колебаний. Если же волны приходят к точке среды в противофазе, то смещение частиц будет разнонаправленным, что приводит к уменьшению амплитуды колебаний.

Поглощение ультразвуковых волн

Поскольку среда, в которой распространяется ультразвук, обладает вязкостью, теплопроводностью и имеет другие причины внутреннего трения, то при распространении волны происходит поглощение, то есть по мере удаления от источника амплитуда и энергия ультразвуковых колебаний становятся меньше. Среда, в которой распространяется ультразвук, вступает во взаимодействие с проходящей через него энергией и часть её поглощает. Преобладающая часть поглощённой энергии преобразуется в тепло, меньшая часть вызывает в передающем веществе необратимые структурные изменения. Поглощение является результатом трения частиц друг об друга, в различных средах оно различно. Поглощение зависит также от частоты ультразвуковых колебаний. Теоретически, поглощение пропорционально квадрату частоты.

Величину поглощения можно характеризовать коэффициентом поглощения, который показывает, как изменяется интенсивность ультразвука в облучаемой среде. С ростом частоты он увеличивается. Интенсивность ультразвуковых колебаний в среде уменьшается по экспоненциальному закону. Этот процесс обусловлен внутренним трением, теплопроводностью поглощающей среды и её структурой. Его ориентировочно характеризует величина полупоглощающего слоя, которая показывает на какой глубине интенсивность колебаний уменьшается в два раза (точнее в 2,718 раза или на 63 %). По Пальману, при частоте, равной 0,8 МГц, средние величины полупоглощающего слоя для некоторых тканей таковы: жировая ткань — 6,8 см; мышечная — 3,6 см; жировая и мышечная ткани вместе — 4,9 см. С увеличением частоты ультразвука величина полупоглощающего слоя уменьшается. Так, при частоте, равной 2,4 МГц, интенсивность ультразвука, проходящего через жировую и мышечную ткани, уменьшается в два раза на глубине 1,5 см.

Кроме того, возможно аномальное поглощение энергии ультразвуковых колебаний в некоторых диапазонах частот — это зависит от особенностей молекулярного строения данной ткани. Известно, что 2/3 энергии ультразвука затухает на молекулярном уровне и 1/3 на уровне микроскопических тканевых структур.

Глубина проникновения ультразвуковых волн

Под глубиной проникновения ультразвука понимают глубину, при которой интенсивность уменьшается вдвое. Эта величина обратно пропорциональна поглощению: чем сильнее среда поглощает ультразвук, тем меньше расстояние, на котором интенсивность ультразвука ослабляется наполовину.

Рассеяние ультразвуковых волн

Если в среде имеются неоднородности, то происходит рассеяние звука, которое может существенно изменить простую картину распространения ультразвука и, в конечном счете, также вызвать затухание волны в первоначальном направлении распространения.

Преломление ультразвуковых волн

Так как акустическое сопротивление мягких тканей человека ненамного отличается от сопротивления воды, можно предполагать, что на границе раздела сред (эпидермис — дерма — фасция — мышца) будет наблюдаться преломление ультразвуковых волн.

Отражение ультразвуковых волн

На явлении отражения основана ультразвуковая диагностика. Отражение происходит в приграничных областях кожи и жира, жира и мышц, мышц и костей. Если ультразвук при распространении наталкивается на препятствие, то происходит отражение, если препятствие мало, то ультразвук его как бы обтекает. Неоднородности организма не вызывают значительных отклонений, так как по сравнению с длиной волны (2 мм) их размерами (0,1—0,2 мм) можно пренебречь. Если ультразвук на своём пути наталкивается на органы, размеры которых больше длины волны, то происходит преломление и отражение ультразвука. Наиболее сильное отражение наблюдается на границах кость — окружающие её ткани и ткани — воздух. У воздуха малая плотность и наблюдается практически полное отражение ультразвука. Отражение ультразвуковых волн наблюдается на границе мышца — надкостница — кость, на поверхности полых органов.

Бегущие и стоячие ультразвуковые волны

Видеоурок: возникновение звука

Если при распространении ультразвуковых волн в среде не происходит их отражения, образуются бегущие волны. В результате потерь энергии колебательные движения частиц среды постепенно затухают, и чем дальше расположены частицы от излучающей поверхности, тем меньше амплитуда их колебаний. Если же на пути распространения ультразвуковых волн имеются ткани с разными удельными акустическими сопротивлениями, то в той или иной степени происходит отражение ультразвуковых волн от пограничного раздела. Наложение падающих и отражающихся ультразвуковых волн может приводить к возникновению стоячих волн. Для возникновения стоячих волн расстояние от поверхности излучателя до отражающей поверхности должно быть кратным половине длины волны.

Инфразвук

Основная статья: Инфразвук

Инфразву́к (от лат. infra — ниже, под) — звуковые колебания, имеющие частоты ниже воспринимаемых человеческим ухом. За верхнюю границу частотного диапазона инфразвука обычно принимают 16—25 Гц. Нижняя же граница инфразвукового диапазона условно определена как 0,001 Гц. Практический интерес могут представлять колебания от десятых и даже сотых долей герц, то есть с периодами в десяток секунд.

Поскольку природа возникновения инфразвуковых колебаний такая же, как и у слышимого звука, инфразвук подчиняется тем же закономерностям, и для его описания используется такой же математический аппарат, как и для обычного слышимого звука (кроме понятий, связанных с уровнем звука). Инфразвук слабо поглощается средой, поэтому может распространяться на значительные расстояния от источника. Из-за очень большой длины волны ярко выражена дифракция.

Инфразвук, образующийся в море, называют одной из возможных причин нахождения судов, покинутых экипажем.

Опыты и демонстрации

Для демонстрации стоячих волн звука служит труба Рубенса.

Различие в скоростях распространения звука наглядно, когда вдыхают вместо воздуха гелий, и говорят что-либо, выдыхая им, — голос становится выше. Если же газ — гексафторид серы SF6, то голос звучит ниже. Связано это с тем, что газы примерно одинаково хорошо сжимаемы, поэтому в обладающем очень низкой плотностью гелии по сравнению с воздухом происходит увеличение скорости звука, и понижение — в гексафториде серы с очень высокой для газов плотностью, размеры же ротового резонатора человека остаются неизменными, в итоге меняется резонансная частота, так как чем выше скорость звука, тем выше резонансная частота при остальных неизменных условиях.

О скорости звука в воде можно визуально получить представление в опыте дифракции света на ультразвуке в воде. В воде по сравнению с воздухом, скорость звука выше, так как даже при существенно более высокой плотности воды (что должно было бы привести к падению скорости звука), вода настолько плохо сжимаема, что в итоге в ней скорость звука оказывается всё равно в несколько раз выше.

В 2014 году была представлена установка, которая звуковыми волнами поднимает сантиметровые предметы.

Примечания

  1. И. П. Голямина. Звук // Физическая энциклопедия : / Гл. ред. А. М. Прохоров. — М.: Советская энциклопедия (т. 1—2); Большая Российская энциклопедия (т. 3—5), 1988—1999. — ISBN 5-85270-034-7.
  2. Слух — общая информация (недоступная ссылка). Дата обращения 25 августа 2010. Архивировано 12 января 2013 года.
  3. Архив журнала «Звукорежиссёр», 2000, #8 Архивная копия от 27 февраля 2007 на Wayback Machine
  4. Архив журнала «Звукорежиссёр», 2000, #9 Архивировано 27 февраля 2007 года.
  5. Jacob B. Khurgin. Phonon lasers gain a sound foundation (англ.) // Physics. — 2010. — Vol. 3. — P. 16.
  6. Мезенцев В. А. В тупиках мистики. М.: Московский рабочий, 1987.
  7. Демонстрация изменения голоса с гексафторидом серы на youtube.com
  8. Акустический «силовой луч» притягивает предметы на расстоянии

Литература

  • Звук // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.
  • Радзишевский А. Ю. Основы аналогового и цифрового звука. — М.: Вильямс, 2006. — С. 288. — ISBN 5-8459-1002-1.

Ссылки

В родственных проектах

  • Значения в Викисловаре
  • Цитаты в Викицитатнике
  • Медиафайлы на Викискладе
  • Портал «Физика»

Поддержи нас в социальных сетях!

В течение последних десятилетий резко возросло количество разного рода машин и других источников шума, распространение портативных радиоприемников и магнитофонов, нередко включаемых на большую громкость, увлечение громкой популярной музыкой. Отмечено, что в городах каждые 5-10 лет уровень шума возрастает на 5 дБ (децибел).

Следует учитывать, что для отдаленных предков человека шум представлял собой сигнал тревоги, указывал на возможность опасности. При этом быстро активизировалась симпатико-адреналовая и сердечно-сосудистая системы, газообмен и менялись и другие виды обмена (повышался в крови уровень сахара, холестерина), готовя организм к борьбе или бегству.

Хотя у современного человека эта функция слуха потеряла такое практическое значение, «вегетативные реакции борьбы за существование» сохранились. Так, даже кратковременный шум в 60-90 дБ вызывает увеличение секреции гормонов гипофиза, стимулирующих выработку многих других гормонов, в частности, катехоламинов (адреналина и норадреналина), усиливается работа сердца, суживаются сосуды, повышается артериальное давление (АД). При этом отмечено, что наиболее выраженное повышение АД отмечается у больных гипертонией и лиц с наследственной предрасположенностью к ней.

Под воздействием шума нарушается деятельность мозга: меняется характер электроэнцефалограммы, снижается острота восприятия, умственная работоспособность. Отмечено ухудшение пищеварения. Известно, что длительное пребывание в шумной обстановке ведет к снижению слуха. В зависимости от индивидуальной чувствительности люди поразному оценивают шум как неприятный и мешающий им.

При этом интересующая слушателя музыка и речь даже в 40-80 дБ могут переноситься относительно легко. Обычно слух воспринимает колебания в пределах 16-20000 Гц (колебаний в секунду). Важно подчеркнуть, что неприятные последствия вызывает не только чрезмерный шум в слышимом диапазоне колебаний: ультра- и инфразвук в невоспринимаемых слухом человека диапазонах (выше 20 тыс.Гц и ниже 16Гц) также вызывает нервное перенапряжение, недомогание, головокружение, изменение деятельности внутренних органов, особенно нервной и сердечно-сосудистой систем.

Установлено, что у жителей райнов, расположенных рядом с крупными международными аэропортами, заболеваемость гипертонией отчетливо выше, чем в более тихом районе того же города. При этих наблюдениях-открытиях начали появлятся методы целенаправленного воздействия на человека. Воздействовать на ум и поведение человека можно различными путями, один из которых требует специальной аппаратуры (технотронные приемы, зомбирование).

Инфразвук в нашем повсевдневном окружении

Исследования по генерированию инфразвука и воздействию его на человека развернулись во всех странах мира. Сошлемся, например, на материалы Международного коллоквиума по инфразвуку, состоявшегося в Париже в середине 70-х годов. Эти материалы составляли сборник объемом около 500 страниц. Начнем с печально экзотических инцендентов, предположительно связанных с инфразвуком. Виднейший акустик Т. Тарноци доложил о гибели в гроте Бордаль ( Верхняя Венгрия) трех туристов в условиях резкого изменения атмосферного давления. В сочетании с узким и длинным входным коридором грот являл собой подобие низкочастотного резонатора, а это могло послужить причиной резкого увеличения колебаний давления инфразвуковой частоты.

Переодически наблюдавшееся появление судов- “летучих голандцев” с мертвыми на борту также иногда предположительно приписывали мощным инфразвуковым колебаниям, возникающим во время сильных штормов, тайфунов. Снабдить бы все суда простейшими инфразвуковыми самописцами уровня, чтобы можно было сопоставить затем изменения самочувствия экипажа с записанными колебаниями давления воздушной среды.

Пока же специалисты по охране окружающей среды ограничились тем, что установили, например, приемники инфразвука в верхних частях “точечных” зданий и при этом обнаружили следующее. Во время сильных порывов ветра уровень инфразвуковых колебаний ( частоты 0.1 Гц) достигал на тридцатом этаже 140 дБ, то есть даже несколько превышал порог болевого ощущения уха в диапазоне слышимых частот.

Элементарная частица нейтрино обладает, как известно, громадной проникающей способностью. Инфразвук – своего рода ”акустическое нейтрино” – спосрбен проходить без заметного ослабления через стекла и даже сквозь стены. Можно представить, что чувствуют не особенно здоровые люди в очень высоких зданиях при сильных порывах ветра. Обычно за верхнюю границу инфразвукового диапазона принимают 15-40 Гц; такое определение условно, поскольку при достаточной интенсивности слуховое восприятие возникает и на частотах в единицы герц.

В настоящее время область его излучения простирается вниз примерно до 0.001 Гц. Таким образом, диапазон инфразвуковых частот охватывает около 15 октав. Природные источники мощного инфразвука – ураганы, извержения вулканов, электрические разряды и резкие колебания давления в атмосфере, быть может, не столь уж часто докучают человеку. Но в этой вредной области инфразвука человек быстро догоняет природу и в ряде случаев уже перегнал ее.

Так, при запуске космических ракет типа “Аполлон” рекомендуемое (кратковременное) значение инфразвукового уровня для космонавтов составляло 140 дБ, а для обслуживающего персонала и окружающего населения 120 дБ. Встреча двух поездов, движение поездов в тоннеле сопровождается появлением инфразвукового шлейфа.

Инфразвук в нашем повседневном окружении . На эту тему старейший английский акустик, лауреат премии Рэлия, доктор Стефенс делал доклады на всех международных форумах. Инфразвуковые шумы, производимые градирнями таплоэлектроцентралей, различными устройствами всасывания воздуха или выпуска отроботавших газов; неслышимые, но такие вредные инфразвуковые излучения мощных виброплощадок, грохотов, дробилок, транспортеров. Инфразвуковым шумам в судостроении была посвящена большая работа в югославском журнале.

Технотронные методики

В общем источников инфразвука хоть отбавляй. Поговорим теперь о том, каков же все-таки вероятный механизм воздействия инфразвука на организм человека и удается ли хоть в какой-то мере с этим воздействием боротся.Длина инфразвуковой волны весьма велика (на частоте 3.5 Гц она равна 100 метрам), проникновение в ткани тела также велико. Фигурально говоря, человек слышит инфразвук всем телом.

Какие же неприятности может причинить проникший в тело инвразвук? Естественно, об этом пока имеются лишь отрывочные сведения.Современная наука предложила много специфичных способов для управления поведением, мыслями и чувствами человека. При этом в частности используют:

— нижепороговое аудиовизуальное раздражение;

— электрошок;

— ультразвук;

— инфразвук;

— сверхвысокочастотное (СВЧ) излучение;

— торсионное излучение;

— ударные волны.

Рассмотрим воздействие инфразвуком немного подробнее:

Довольно эффективно, в смысле влияния на человека, задействование механического резонанса упругих колебаний с частотами ниже 16 Гц, обычно невоспринимаемыми на слух. Самым опасным здесь считается промежуток от 6 до 9 Гц. Значительные психотронные эффекты сильнее всего выказываются на частоте 7 Гц, созвучной альфаритму природных колебаний мозга, причем любая умственная работа в этом случае делается невозможной, поскольку кажется, что голова вот-вот разорвется на мелкие кусочки. Звук малой интенсивности вызывает тошноту и звон в ушах, а также ухудшение зрения и безотчетный страх. Звук средней интенсивности расстраивает органы пищеварения и мозг, рождая паралич, общую слабость, а иногда слепоту.

Упругий мощный инфразвук способен повредить, и даже полностью остановить сердце. Обычно неприятные ощущения начинаются со 120 дБ напряженности, травмирующие — со 130 дБ. Инфрачастоты около 12 Гц при силе в 85-110 дБ, наводят приступы морской болезни и головокружение, а колебания частотой 15-18 Гц при той же интенсивности внушают чувства беспокойства, неуверенности и, наконец, панического страха. В начале 1950-х годов французский исследователь Гавро, изучавший влияние инфразвука на организм человека, установил, что при колебаниях порядка 6 Гц у добровольцев, участвовавших в опытах возникает ощущение усталости, потом беспокойства, переходящего в безотчетный ужас. По мнению Гавро, при 7 Гц возможен паралич сердца и нервной системы.

Ритмы характерные для большинства систем организма человека лежат в инфразвуковом диапазоне:

сокращения сердца 1-2 Гц

дельта-ритм мозга (состояние сна) 0,5-3,5 Гц

альфа-ритм мозга (состояние покоя) 8-13 Гц

бета-ритм мозга (умственная работа) 14-35 Гц .

Внутренние органы вибрируют тоже с инфразвуковыми частотами. В инфразвуковом диапазоне находится ритм кишечника.

Исследования медиков в области влияния на человека инфразвука.

Медики обратили внимание на опасный резонанс брюшной полости, имеющей место при колебаниях с частотой 4-8 Гц . Попробовали стягивать (сначало на модели) область живота ремнями. Частоты резонанса несколько повысились, однако физиологическое воздействие инфразвука не ослабилось.Легкие и сердце, как всякие объемные резонирующие системы, также склонны к интенсивным колебаниям при совпадении частот их резонансов с частотой инфразвука. Самое малое сопротивление инвразвуку оказывают стенки легких, что в конце концов может вызвать их повреждение.Мозг. Здесь картина взаимодействия с инфразвуком особенно сложна.

Небольшой группе испытуемых было предложено решить несложные задачи сначала при воздействии шума с частотой ниже 15 герц и уровнем примерно 115 дБ, затем при действии алкоголя и, наконец, при действии обоих факторов одновременно. Была установленна аналогия воздействия на человека алкоголя и инфразвукового облучения. При одновременном влиянии этих факторов эффект усиливался, способность к простейшей умственной работе заметно ухудшалась.

В других опытах было установлено, что и мозг может резонировать на определенных частотах. Кроме резонанса мозга как упругоинерционного тела выявилась возможность “перекрестного” эффекта резонанса инфразвука с частотой a- и b- волн, существующих в мозгу каждого человека. Эти биологические волны отчетливо обнаруживаются на энцефалограммах, и по их характеру врачи судят о тех или иных заболеваниях мозга. Высказано предположение о том, что случайная стимуляция биоволн инфрозвуком соответствующей частоты может влиять на физиологическое состояние мозга.

Кровеносные сосуды. Здесь имеются некоторые статистические данные. В опытах французских акустиков и физиологов 42 молодых человека в течении 50 минут подверглись воздействию инфразвука с частотой 7.5 Гц и уровнем 130 дБ. У всех испытуемах возникло заметное увеличение нижнего предела артериального давления.

При воздействии инфразвука фиксировались изменения ритма сердечных сокращений и дыхания, ослабление функций зрения и слуха, повышенная утомляемость и другие нарушения. Воздействие низкочастотных колебаний на живые организмы известно давно. Например, некоторые люди, испытавшие подземные толчки при землетрясении, страдали от тошноты. (*Тогда следует вспомнить и о тошноте, вызываемой колебаниями судна или качелей.

Это связано с воздействием на вестибулярный аппарат. И проявляется подобный «эффект» не у всех.) Никола Тесла (фамилия которого теперь обозначает одну из основных единиц измерений, уроженец Сербии) около ста лет тому назад инициировал такой эффект у подопытного, сидящего на вибрирующем стуле. (*Умников, считающих этот опыт негуманным не нашлось) . Наблюдаемые результаты относятся к взаимодействию твердых тел, когда колебания передаются человеку через твердую среду.

Воздействие колебаний, передаваемых организму от воздушной среды, недостаточно изучено. Раскачать тело, как например на качелях, таким способом не удастся. Возможно, что неприятные ощущения возникают при резонансе: совпадении частоты вынужденных колебаний с частотой колебаний каких либо органов или тканей. В прежних публикациях об инфразвуке упоминали его воздействие на психику, проявляющееся как необъяснимый страх. Может быть, в этом также «виноват» резонанс.

В физике резонансом называют увеличение амплитуды колебаний объекта, когда его собственная частота колебаний совпадает с частотой внешнего воздействия. Если таким объектом окажется внутренний орган, кровеносная либо нервная система, то нарушение их функционирования и даже механическое разрушение, вполне реально.

Существуют ли какие-нибудь меры борьбы с инфразвуком?

Некоторые меры борьбы с инфразвуком

Следует признаться, что этих мер пока не так уж много.Общественные меры борьбы с шумом начали разрабатываться уже давно. Юлий Цезарь почти 2000 лет назад в Риме запретил езду ночью на грохочущих колесницах. А 400 лет назад королева Англии Елизавета Третья запретила мужьям бить своих жен после 10 часов вечера, «чтобы их крики не беспокоили соседей».

Сейчас уже в мировом масштабе принимаются меры борьбы с шумовым загрязнением среды: усовершенствуются двигатели и другие части машин, этот фактор учитывается при проектировании трасс и жилых районов, используются звукоизолирующие материалы и конструкции, экранирующие устройства, зеленые насаждения. Но следует помнить, что и каждый из нас должен быть активным участником этой борьбы с шумом.

Упомянем оригинальный глушитель инфразвукового шума компрессоров и других машин, разработанный лабораторией охраны труда Санкт-Петербургского института инженеров железнодорожного транспорта. В коробе этого глушителя одна из стенок сделана податливой, и это позволяет выравнивать низкочастотные переменные давления в потоке воздуха, идущего через глушитель и трубопровод. Площадки виброформовочных машин могут являтся мощным источником низкочастотного звука.

По-видимому, здесь не исключено применение интерфереционного метода ослабления излучения путем противофазного наложения колебаний. В системах всасывания и распыления воздуха следует избегать резких изменений сечения, неоднородностей на пути движения потока, чтобы исключить возникновение низкочастотных колебаний. Некоторые исследователи разделяют действие инфразвука на четыре градации – от слабой до смертельной. Классификация – вещь хорошая, но она выглядит довольно беспомощьно, если неизвестно, с чем связано проявление каждой градации.

Инфразвук на сцене и телевидении?

Если посмотреть в прошлое, то там можно уже заметить воздействие инфразвуковыми частотами на человека. Вот инструкция из книги Мишеля Харнера “Путь шамана”:Для входа в “тунель” вам понадобится, чтобы ваш партнер все время, необходимое для получения вами “шаманского состояния сознания” сопровождал ударами в барабан или бубен с частотой 120 ударов в минуту (2 Гц).

Также, можно использовать магнитофонную запись шаманского “камлания”. Через несколько минут вы увидите тунель из черных и белых колец и начнете двигаться по нему. Скорость чередования колец задается ритмом ударов.Известно, что современная рок-музыка, джаз и т.п. обязаны своим происхождением традиционной африканской “музыке”. Эта, так называемая “музыка”, ни что иное, как элемент ритуальных действий африканских шаманов или коллективных ритуальных действий племени.

Большинство мелодий и ритмов рок-музыки взяты непостредственно из практики африканских шаманов. Таким образом, воздействие рок-музыки на слушателя основано на том, что он вводится в состояние, похожее на то, которое переживает шаман во время ритуальных действий. “Сила рока заключена в прерывистых пульсациях, ритмах, вызывающих биопсихическую реакцию организма, способную повлиять на функционирование различных органов.

Если ритм кратен полутора ударам в секунду и сопровождается мощным давлением инфразвуковых частот, то способен вызвать у человека экстаз. При ритме же равном двум ударам в секунду, и на тех же чатотах, слушающий впадает в танцевальный транс, который сходнен наркотическому”. В этом же ряду стоит и собственно ритуальная музыка, например, “медитативная” музыка Секо Асахары, главы религиозной секты “Аум Синрике”, которая в свое время изо дня в день транслировалась российским радио на всю страну.

Воздействие психотронного оружия наиболее массировано, когда в качестве промежуточных каналов используется телевидение и компьютерные системы. Современные компьютерные технологии позволяют преобразовать любой звуковой (музыкальный) файл таким образом, чтобы при прослушивании возникали необходимиые спецэффекты: “…звук, закодированный под альфа-ритм, поможет Вам расслабиться, звук, закодированный под дельта-ритм, поможет уснуть, под тета-ритм – достигнуть состояния медитации”.

Так является ли инфразвук психотронным оружием?

Создатели сверхоружия, основанного на воздействии инфразвука, утверждают, что оно полностью подавляет противника, вызывая у него такие «неотвратимые» последствия, как тошнота и понос. Разработчики вооружения такого вида и исследователи его ужасных последствий «съели» немало денег из госказны. Возможно, однако, что вышеупомянутые неприятности грозят не воображаемому противнику, а вполне реальным генералам — заказчикам подобного оружия — в качестве возмездия за некомпетентность.

Юрген Альтман (Jurgen Altmann), исследователь из Германии, на совместной конференции Европейской и Американской акустических ассоциаций (март 1999) заявил, что инфразвуковое оружие не вызывает приписываемых ему эффектов. На подобные штуки надеялись в армии и полиции. Блюстители правопорядка полагали, что эти средства более эффектны, чем химические, такие, как например, слезоточивый газ.А пока что, как утверждает Альтман, изучавший влияние на людей и животных инфразвуковых колебаний, звуковое оружие не работает.

По его словам, даже при уровне шума 170 децибел что-либо особенное, вроде непроизвольных испражнений, зафиксировать не удалось. (*Вспомнилось, что недавно СМИ отметили успешные испытания инфра-пугалки американского производства. Блеф на благо «изобретателям» и на устрашение воображаемого противника ?)

Сид Хил (Sid Heal), работающий на минобороны США по программе разработки инфразвукового оружия, отмечает, что исследователи изменили постановку задачи. Наряду с попытками создания прототипов оружия они тщательно изучают воздействие инфразвука на человека.Однако же всетаки в настоящее время достаточно в час “Х” добавить “катализатор” – и заложенная программа заработает. Начнется разрушение органов, искусственная мутация генов или изменение сознания. Таким “толчком” может, например, стать массированное облучение о проблеме которой беспокоются российские ученые и военные.

Из рассказа доктора технических наук В. Канюка: “Я возглавлял секретный комплекс в Подлипкахю. Он входил в НПО “Энергия” (руководитель – акодемик В.П. Глушко). Во исполнении закрытого Постановления ЦК КПСС и Совмина СССР от 27 января 1986 года мы создали генератор специальных физических полей. Он был способен корректировать поведения огромных масс населения. Выведенная на космическую орбиту, эта аппаратура охватывала своим “лучем” территорию, равную Краснодарскому краю. Средства, ежегодно выделявшиеся на эту и смежные с ней программы, были эквивалентны пяти миллиардам долларов .”

Летом 1991 года комитет Верховного Совета СССР опубликовал жутковатую цифру. КГБ, Минсредмаш, Академия наук, Министерство обороны и другие ведомства израсходовали на разработки психотронного оружия полмиллиарда полновесных дореформенных рублей. Одной задачей было “дистанционное медикобиологическое и психофизическое воздействие на войска и население противника”. Торсионные, микролентонные и другие недавно открытые частицы обладают колоссальной проникаемостью.

Генераторы подобных полей создаются, например, в зеленоградской лаборотории. Из инструкции одного из таких приборов: ”Прибор настраивается на индивидуальные волновые характеристики человека. Очевидно, возможна настройка на параметры целого этноса. При этом для решения расовых проблем уже не нужны концлагеря. Все происходит абсолютно незаметно. Объект либо вымирает, либо теряет свои национальные черты”. (Кстати, по определению умершего загадочной смертью академика Ф.Я. Шипурова, душа человека есть волновое поле с измеримами характеристиками. Это справедливо и в отношении существующих “душ” народов).

Многие ученные обеспокоены зловещими возможностями этнического оружия. Существуют отечественные разработки “Лава-5” и “Русло-1”. Указывается, что в классификации средств массового поражения (ею пользуются военно промышленные комплексы развитых стран) появился пункт: “Это оружие с воздействием на генетический аппарат. В определенных кругах оно называется “экологически чистым” и даже “гуманным”. Не разрушающим городов и зачастую не убивающим людей”.

Был случай, когда в 90-х годах, в американской прессе прошла серия сенсационных публикаций о загадочной гибели индейцев. По непонятной причине умирали только представители племени навахо. Количество жертв составило несколько десятков человек. Итак, только индейцы. И только навахо. Среди версий есть предположение о воздействии психотропным оружием.

Вывод

Да, человечество еще на самом деле не полностью сдернуло маску с незнакомца, именуемого инфразвуком. Но рано или поздно это будет сделано.В свое время Роберт Кох предсказал: «Когда-нибудь человечество вынуждено будет расправляться с шумом столь же решительно, как оно расправляется с холерой и чумой». И это действительно так. Ученные многих стран мира решают проблему борьбы с шумом, так как и он является источником инфразвука.

Проводятся всякие всевозможные меры “расправы” как над инфразвуком, так и над шумом. Например в судостроении: цена корабля определяется как 70-80% за построение его и 20-30% работы по шумоизоляции. Так как сейчас между ученными идет спор, опасен ли все-таки так сильно инфразвук или нет, я без малейших колебаний могу сказать, что да, он очень опасен. Тем более, если над ним не иметь контроля.

При изучении литературы и всяких статей сделан вывод, что американцы пытаются убедить мир о безопасности влияния инфразвука, хотя сами ведут разработки как оружия, так и меры противостояния воздействию инфразвуком. Как можно это понять? Думаю сам факт смотрит в лицо. В России также ведутся в это тяжелое время еще работы как над мерами воздействия, так и прототипами оружия. Это правильно, так как останавливаться в таких исследованиях нежелательно, тем более что “это” — этническое оружие.

Современный человек живет во все более и более уплотняющемся потоке информации. Характер этого потока настолько многообразен, что мы просто не способны пока многое из него усвоить и пропустить через сознание. Но кто задумывается над качеством информационного потока и о его влиянии на наше мышление, психическое и физическое состояние здоровья, и как результат – на нашу жизнь?

Музыка — это тоже информационный поток. Большинство людей любят слушать музыку, до конца не осознавая, какое она имеет воздействие на человека. Иногда музыка вызывает излишнюю энергию, а порой оказывает расслабляющее действие. Но какова бы ни была реакция слушателя на музыку, она, безусловно, имеет свойство оказывать влияние на психику человека. Еще древние философы утверждали, что музыка способна гармонично развивать и наполнять человека. Кроме того, она обладает функциями созидания и разрушения.

Новейшие теории и эксперименты современных физиков говорят о том, что весь наш мир имеет волновую природу: воздух, твердые предметы, наши тела и даже мысли и чувства. А то, что звук является волной, мы знаем со школы. Это значит, что мы способны получать информацию от любого объекта, даже неосознанно.

Ни для кого не секрет, что в различном психическом состоянии мы используем разные слова, обороты речи и строим по-разному предложения, наполняя его жесткими или приятными, добрыми или злыми, радостными или печальными словами. По тому, что говорит человек, мы можем сделать какие-то выводы о его настроении, характере, жизненных принципах. Слово, как и любой другой энерго-информационный элемент окружающей среды, видимый и не видимый, имеет свою смысловую качественность и свою вибрацию. Оно является проявлением наших Мыслей и Чувств, наших представлений о жизни, наработанных с детства и воспитанных в нас родителями и социумом. Слово способно и воодушевить, и убить. Его вибрация несет в себе информацию того плана, того уровня сознания, которое активно у нас в текущее время.

Психическим проявлением информации волн являются эмоции. Во все времена музыка была самым сильным фактором воздействия на психику слушателя. Она способна вызывать бурю различных эмоциональных переживаний, которые еще долго переживаются после ее прослушивания. А психическое состояние влечет и соответствующие действия, выборы, решения. Выбор любимого музыкального жанра во многом зависит от психологической, социальной и духовной зрелости личности, от потребностей удовлетворения внутреннего эмоционального и психического состояния. Каждый музыкальный стиль пробуждает в человеке те или иные эмоциональные переживания.

Еще Пифагор призывал использовать музыку в воспитательном процессе и был первым, кто составил научные принципы изучения музыки и ее звучания. Он считал, что музыка способна гармонизировать «душевные недуги» человека. Уже тогда существовали мелодии, созданные «против страстей Души: против уныния и внутренних язв, против раздражения, против гнева…. и других вожделений». А Платон считал, что музыкальное образование должно стать основой государственного образования и обязательным для всех граждан.

Бороздя просторы «мировой информационной паутины» можно увидеть, насколько актуальна и интересна людям тема влияния музыки на человека, сколько существует различных течений, мнений, исследований и доказательств. Каждый человек старается доказать свое видение, утвердить свое мировоззрение. Но сколько людей, столько и мнений. Я буду стараться придерживаться научно доказанных и обоснованных фактов. Кому-то они могут не понравиться, но в любом случае, каждый человек волен выбирать, что ему слушать и как относиться к изложенным фактам. Современные ученые, изучая вопрос влияния звука и вибрации на психофизическое состояние человека, пришли к выводу, что оно существует!

Информация правит миром

Актуальность смысла этой фразы гораздо глубже, чем то, как мы ее понимаем. Любой объект, будь он живой, неодушевленный или природное явление, несет в себе информацию, свою вибрацию. Любая полученная нами информация влияет на нас и нередко весьма кардинально меняет наше мышление и жизнь.

Каким образом это происходит? Информационное пространство, которое насыщает и которым пользуется человек, условно можно разделить на некие качественные области, формируемые нашим пониманием жизни, межличностными отношениями, моральными принципами, социальными устоями и прочее. Образуется огромное количество специфичных клише-представлений или конгломератов, отражающих стереотипное мышление нас как представителей человечества. Назовем их формо-образами. Каждый человек, вне зависимости от его территориального и социального происхождения, знает себя во множестве оттенков психических реакций на какое-то действие, предмет, общественное событие и тому подобное, в которых он применяет эти представления. Каждая такая реакция дополняет «портрет» уже существующего формо-образа данного явления, и другие люди часто просто пользуются тем, что уже имеется. Каждый такой формо-образ, являясь следствием психического состояния человека, отражает все его возможные варианты и может быть отражен в проявленной реакции человека в примерно таком же эмоционально-психическом состоянии. То есть у каждой реакции, каждой эмоции человека есть только своя ниша для проявления, вызываемая резонансом информационного содержания. Любой психизм носит информационный характер. Все наше мироздание состоит из сложно-конфигурационных сочетаний разнокачественной информации. И как часть этого грандиозного Творения, мы также состоим из различных аспектов информации. Ну а неповторимость и индивидуальность каждой личности может только свидетельствовать о невообразимо огромном количестве различных вариантов комбинаций информационных фрагментов.

Ну, а дальше все просто. В зависимости от того, из каких информационных фрагментов состоит личность, таким формо-образом соответствующего качества и может пользоваться человек, так как только именно этот формо-образ способен отразить его настроение, взгляды и реакции. И именно поэтому часто мы можем распознать состояние человека, которое он пытается скрыть. Информационной волне его формо-образа не нужны слова для того, чтобы заявить о себе. Знакомые и нам в определенных случаях, состояния другого человека легко опознаются. Сознательно или бессознательно мы реагируем на получаемую информацию. Она способна вызвать наши психические переживания. Любое музыкальное произведение — это также передача автором его формо-образов, несущих заложенную в них информацию.

Человеку, который подходит осознанно к выбору музыки, важно знать, что любое музыкальное произведение отражает психическое состояние как самого автора, являясь неким музыкальным рассказом его эмоционального состояния, так и исполнителя произведения. Написанные в глубокой депрессии, негативизме, негодовании или состоянии радости, влюбленности, ликования, музыкальные произведения навсегда запечатлевают заложенные переживания и несут эту информацию слушателю.

Информация, которую несет в себе звуковая волна (как и любая другая волна в нашем мире) способна вызывать резонационную активность в конкретном отделе мозга, активизация которого, в свою очередь, ведет к выработке гормона, соответствующего данной области. Распространяясь по всему организму, гормон, конечно же, влияет на работу органов. Избыточное количество определенного гормона образует дисбаланс в работе всего организма. А если это происходит постоянно, то возможны различные патологии в функциях каких-либо органов. Мы же, наблюдая такие изменения в здоровье, часто не понимаем их причин.

Такое же влияние на выработку гормонов оказывают и наши мысли. Научные исследования показали, что в зависимости от того, о чем думает человек, у него наблюдается активность мозга в разных зонах. Качество психических реакций активизирует определенную зону мозга.

Мозг — это сложно функциональный «аппарат», отвечающий за слаженную работу наших психизмов и био-системы. Каждая наша реакция, способность адекватно мыслить и поступать, и даже качество мысли и поступков, зависит от слаженной работы всех областей этого органа. Нарушение гармонии в работе систем мозга приводит к дисбалансу гормональной активности в организме, переизбытку или нехватке этих регуляторов некоторых процессов.

Важность этой информации заключается еще и в том, что каждой психической реакции соответствует своя частота, свой диапазон проявления. Даже один непозитивный психизм способен усилить и вызвать активность череды других диссонационных состояний.

Частотный диапазон организма и влияние на него музыки

Считается, что ухо самый важный орган, через который звуковая информация поступает в мозг. Но у нас есть еще некоторые анатомические возможности для приема-передачи звуковых волн. Череп человека — это большая мембрана, сквозь которую звук напрямую идет к мозгу. И что интересно, доктор медицинских наук Сергей Шушарджан, врач со стажем и профессиональный певец, в своих исследованиях о воздействии музыки установил, что даже кожа является проводником звуков в организм. Музыка, имея волновую природу, передается через виброрецепторы в коже, воспринимающие звуковые волны в широком диапазоне. При воздействии на виброрецепторы звуковых волн определенной частоты «запускается» тот или иной механизм реакции организма на воздействие извне.

Каждый орган работает на определенной частотной волне и когда оно попадает в поле с диссонирующей частотностью на долгое время, то возникают моменты сбоя работы органа. Мы начинаем чувствовать недомогание. А постоянное продуцирование человеком однотипных низкочастотных образов (вслух или в мыслях) приводит к различным функциональным отклонениям в работе организма.

На предприятиях с повышенным шумовым фоном стало обязательным измерение уровня шума и вибрации, так как при длительном воздействии на организм человека, они приводят к различным болезням и так называемой вибропаталогии.

Человеческое ухо способно улавливать звуки в диапазоне от 16 Гц до 20000 Гц. Все частоты, не воспринимаемые нашим слуховым аппаратом, до 16 Гц относятся к инфразвуку, а свыше 20000 Гц – к ультразвуковому спектру волновых колебаний.

Ритмы, характерные для большинства органов и систем организма «человека», лежат в инфразвуковом диапазоне. Внутренние органы нашего тела имеют достаточно низкие собственные частоты: брюшная полость и грудная клетка — 5-8 Гц, голова — 20-30 Гц. Среднее значение резонансной частоты для всего тела составляет 6 Гц. Сокращения сердца – 1-2 Гц; дельта-, альфа-, бета-ритмы мозга; ритм кишечника — 2-4 Гц; вестибулярного аппарата – около 6 Гц и так далее. Мозговая активность живого человека не прекращается даже во время глубокого сна, и мозг постоянно излучает ритмические волны, характеризующие происходящие в нем процессы.

— В дельта-состоянии (δ) мозг излучает волны с частотой колебаний от 0 до 4 Гц. Это может быть либо глубокий сон без сновидений, либо состояние глубокого расслабления, бессознательное состояние (такое, как кома), летаргический сон. Даже во сне мозг продолжает обработку информации, накопленной человеком, и не успевшую стать осознанной.

— В тэта-состоянии (θ) частота колебаний мозга составляет от 4 до 7 Гц. Это глубокое расслабление или медитация; это может быть неглубокий сон. Во время этого ритма возникают особенно яркие видения или интуитивные догадки. Тэта-волны формируют состояния, переходные от спокойного бодрствования к фазам сонливости, предваряющим глубокий сон. Но частоты 5-6 Гц опасны для работы печени и вызывают чувство усталости.

— Альфа-состояние (α) — это частота волновых колебаний головного мозга от 7 до 14 Гц. Диапазон частот от 7 до 8 Гц чрезвычайно опасен для здоровья, так как этот тип вибраций способен спровоцировать эпилептические приступы, смертельно поразить внутренние органы и даже реально деформировать их. Длительное воздействие на мозг звука частотой 7 Гц пагубно влияет на сердце, вплоть до его остановки.

Ученые считают, что, возможно, именно из-за возбуждения резонансных колебаний (особенно когда частота волны совпадает с альфа-ритмом головного мозга) в биологических системах жизнеобеспечения и возникает такое крайне негативное воздействие инфразвуковых вибраций. Это влияние даже используется полицией в ряде стран мира для разгона толпы и предотвращения беспорядков. Включаются мощные генераторы, частоты которых отличаются на 5-9 Гц. Биения, возникающие вследствие различия частот этих генераторов, имеют инфразвуковую частоту и вызывают у большинства людей неприятные зрительные эффекты, необъяснимые страх и тревогу, желание скорее покинуть опасное место.

Такое же влияние могут оказывать на сознание и бинауральные ритмы. Исследования ученого Роберта Монро доказали, что при прослушивании определенных мелодий человек способен ощущать разницу звука между частотами. Например, если одно ухо слышит звук с чистотой 150 Гц, а другое 157 Гц, то оба полушария мозга начинают работать синхронно. Эти ритмы образуют не реальный звук, а «фантом» мощностью всего в 7 Гц.

Зато с 10 до 14 Гц — это колебания, способствующие одновременно и глубокому сосредоточению, и расслаблению; это — покой и душевное равновесие в активном состоянии, мозг способен более продуктивно обрабатывать получаемую информацию. Такое состояние наиболее благоприятно для творческих процессов, принятия более логичных и взвешенных решений.

Излишняя активность диапазона альфа-волн приводит к состояниям апатии, пассивности, желанию отложить все дела. Недостаточная активность мозга в данном диапазоне может свидетельствовать о конфликтном состоянии, психических расстройствах, и, как следствие, активность различных страхов и фобий. Рассказывают, что однажды американский физик Р.Вуд (прослывший среди коллег как большой оригинал и весельчак) принес в театр специальный аппарат, излучающий инфразвуковые волны, и, включив его, направил на сцену. Никакого звука никто не услышал, однако с актрисой случилась истерика.

— Бета-состояние (β) — 14-35 Гц. Это состояние работы мозга самое непродуктивное, потому что оно характеризует стресс, возбуждение. Человек не способен воспринимать чьи-то советы, а только защищаться и противостоять любым предложениям извне. Волны β-состояния вызывают чувство беспокойства, нервозность, растерянность, суетливость. Для глазных яблок опасна частота 19 Гц, при которой возможны различные галлюцинации и расстройства зрения.

— Активное же состояние мозга продуцирует волновые колебания частотой свыше 35 Гц (гамма-состояние).

Иными словами, если частота инфразвуковой волны того же порядка, что и волна вибрации органа, то при очень большой интенсивности они приводят органы к вибрационному резонансу или диссонансу в частотном диапазоне работы органа и способны привести к их дисфункциям. Вибрационный резонанс вызывается мощными внешними генераторами, например, усилителями громкости звука на современной эстраде и рок-концертах.

Сейчас очень много говорится о прямом вреде музыки в стиле рок. Существует множество исследований, статей, лекций, документальных фильмов, рассказывающих о вреде рок-музыки. Психологи и ученые обеспокоены тем влиянием, которое оказывает прослушивание, и тем более постоянное подражание кумирам, на миллионы фанатов рок-групп. Российский академик Н.П.Бехтерева, директор крупнейшего в стране Института Экспериментальной медицины, который много лет занимается изучением высшей нервной деятельности, констатирует, что рок разрушает мозг. О том, что рок-музыка ведет к разгулу темных инстинктов, пишут сами руководители групп. Например, Джерри Рубен, лидер группы «Хиппи» пишет: «Грубая животная энергия горячей струей пронизывала нас, возбуждающий ритм будоражил подавленные желания».

Рок, помимо негативной информации, заложенной в текстах песен, оказывает прямое разрушающее воздействие на организм человека громкостью звучащих мелодий. Музыка этого стиля характеризуется переизбытком высоких и низких частот. Такое чередование совместно с громкостью серьезно травмирует мозг. Ученый-медик Дэвид Элкин однажды провел эксперимент, благодаря которому доказал, что пронзительная громкая музыка провоцирует сворачивание белка. На одном из рок-концертов перед громкоговорителем Элкин положил сырое яйцо. К концу концерта, через три часа яйцо оказалось «сваренным» всмятку.

Усиление низкочастотных колебательных волн от бас-гитары в паре с битом деструктивно влияет на функции спинно-мозговой жидкости, которая контролирует работу слизистых желез. Нарушается равновесие в работе половых желез и надпочечников. Вызванные гормональные нарушения приводят к изменению уровня инсулина в крови.

Пагубное содержание рока ведет к постепенной деградации человеческой личности, вызывая в нем активность эгоистичных животных уровней сознания, различные психические расстройства, галлюцинации.

Еще одним деструктивным фактором для здоровья и психики может стать излишняя громкость звуковой волны. Наше ухо наилучшим образом воспринимает звук в 55-60 децибел. Громким считается звук в 70 децибел. А на площадке, где установлена аппаратура и динамики во время рок-концертов, громкость составляет 120 децибел, а в середине площадки 160 децибел (надо сказать, что 120 дб — это громкость рева взлетающего реактивного самолета!). Что при этом происходит с организмом? Для примера: влияние такого уровня громкости звука воспринимается организмом как опасная ситуация. Вырабатывается гормон стресса – адреналин. Он участвует в реализации реакций типа «бей или беги», ощущении опасности, при тревоге, страхе, при травмах, ожогах и шоковых состояниях. Действие вызывает сужение сосудов органов брюшной полости, кожи и слизистых оболочек; в меньшей степени сужает сосуды скелетной мускулатуры, но расширяет сосуды головного мозга. Артериальное давление под действием адреналина повышается. Адреналин способствует значительному усилению и учащению сердечных сокращений, облегчению атриовентрикулярной проводимости, повышению автоматизма сердечной мышцы, что может привести к возникновению аритмий.

Особенно опасны звуки свыше 95 дБ – под их воздействием начинают резко сужаться сосуды периферической нервной системы, нарушается сердечный ритм, появляется головная боль, мигрень, резко возрастает раздражительность, переходящая в нервный срыв и истерику; при этом мощно нарушается равновесие в организме надпочечных и половых гормонов (адреналина, тестостерона, феромонов и других), дестабилизируется уровень инсулина в крови, нарушается функция контроля за психическими и соматическими состояниями организма со стороны центральной нервной системы.

Все независимые исследования показывают, что рок-музыка опасна для здоровья и психики человека. Опасным заблуждение является то, что, не видя быстрого результата влияния такой музыки, фанаты считают ее безопасной. Доказано, что рьяные слушатели рока имеют травмы слухового аппарата, которые не подлежат лечению, их поведение становится неадекватным, а реакции заторможенными. Обеспокоенные психическим и физическим здоровьем нации различные государственные и общественные организации ведут просветительскую работу в плане влияния музыки на сознание и здоровье человека. Например, Санитарно-эпидемиологическая служба г. Минска на своем сайте разместила статью-обращение с целью привлечь общественное мнение к данной проблеме.

На кафедре акустики МГУ провели исследование наиболее агрессивных образцов рок- и поп-музыки. Компьютер раскладывал звуки на частоты, обертоны, шумы, а затем моделировал свойства человеческой ткани и вычислял, как музыка влияет на организм. Частота основного ритма композиции «ДипПепл» «Smokeonthewater» от двух до четырех герц. Такие скачки, да еще при громкости в 80-100 дБ (как в кузнечном цеху), вызывают сильное возбуждение, вплоть до временной потери контроля над собой, агрессивность к окружающим или, наоборот, негативные эмоции к себе. Тех, кто предрасположен к нервным расстройствам, к психическим заболеваниям, после двух-, трехразового прослушивания подобной композиции ожидает обострение заболеваний или нервные срывы. Шумовые звуки или негармонические обертоны вредят нервной системе: у человека начинают дрожать руки, теряется острота зрения и слуха и одновременно в крови повышается содержание адреналина и других гормонов. Семиклассники после 10-минутного прослушивания рок-композиций временно забывали таблицу умножения. Находящиеся в концертных залах слушатели не смогли ответить на вопросы: «Как вас зовут?», «Где вы находитесь?», «Какой теперь год?».

Композиция «Битлз» «HelterSkelter» — это пример, когда приятная и благозвучная музыка может оказаться на поверку не менее вредной. В ней основной ритм (около 6,4 герц) находится в опасной для человека области резонансных частот грудной клетки и брюшной полости. При прослушивании этой композиции могут появиться внезапные боли в животе и груди. Кроме того, поскольку основной ритм по частоте близок к частоте одного из ритмов головного мозга, существует реальная угроза резонансного совпадения этих частот. Как показали эксперименты с животными, подобное совпадение частот нередко приводит к самому настоящему сумасшествию.

LiveInternetLiveInternet

Опасные звуковые частоты (инфразвук):

  • Инфразвуковые колебания даже небольшой интенсивности вызывают тошноту и звон в ушах, уменьшают остроту зрения;
  • Колебания средней интенсивности могут стать причиной расстройства пищеварения, нарушения функций мозга с самыми неожиданными последствиями;
  • Инфразвук высокой интенсивности, влекущий за собой резонанс, приводит к нарушению работы практически всех внутренних органов, возможен смертельный исход из — за остановки сердца, или разрыва кровеносных сосудов;
Собственные (резонансные) частоты некоторых частей тела человека.

Следует принимать особые меры защиты против появления звуковых колебаний со следующими частотами:

  • 20-30 Гц (резонанс головы)
  • 40-100 Гц (резонанс глаз)
  • 0.5-13 Гц (резонанс вестибулярного аппарата)
  • 4-6 Гц (резонанс сердца)
  • 2-3 Гц (резонанс желудка)
  • 2-4 Гц (резонанс кишечника)
  • 6-8 Гц (резонанс почек)
  • 2-5 Гц (резонанс рук)

    Инфразвук

    ИНФРАЗВУК
    16 Гц
    Диопазон,
    опасный для человека
    (6-8 Гц)
    18,75*106 м

    Инфразвук (от лат. infra — ниже, под) — упругие волны, аналогичные звуковым, но с частотами ниже области слышимых человеком частот. Обычно за верхнюю границу инфразвуковой области принимают частоты 16—25 Гц. Нижняя граница инфразвукового диапазона неопределенна. Практический интерес могут представлять колебания от десятых и даже сотых долей гц, т. е. с периодами в десяток секунд. Инфразвук содержится в шуме атмосферы, леса и моря. Источником инфразвуковых колебаний являются грозовые разряды (гром),а также взрывы и орудийные выстрелы.

    В земной коре наблюдаются сотрясения и вибрации инфразвуковых частот от самых разнообразных источников, в том числе от взрывов обвалов и транспортных возбудителей.

    Для инфразвука характерно малое поглощение в различных средах вследствие чего инфразвуковые волны в воздухе, воде и в земной коре могут распространяться на очень далёкие расстояния. Это явление находит практическое применение при определении места сильных взрывов или положения стреляющего орудия. Распространение инфразвука на большие расстояния в море даёт возможность предсказания стихийного бедствия — цунами. Звуки взрывов, содержащие большое количество инфразвуковых частот, применяются для исследования верхних слоев атмосферы, свойств водной среды.

    «Голос моря» — это инфразвуковые волны, возникающие над поверхностью моря при сильном ветре, в результате вихреобразования за гребнями волн. Вследствие того, что для инфразвука характерно малое поглощение, он может распространяться на большие расстояния, а поскольку скорость его распространения значительно превышает скорость перемещения области шторма, то «голос моря» может служить для заблаговременного предсказания шторма.

    Своеобразными индикаторами шторма являются медузы. На краю «колокола» у медузы расположены примитивные глаза и органы равновесия — слуховые колбочки величиной с булавочную головку. Это и есть «уши» медузы. Они слышат инфразвуки с частотой 8 — 13 герц. Шторм разыгрывается еще за сотни километров от берега, он придет в эти места примерно часов через 20, а медузы уже слышат его и уходят на глубину.

    Влияние инфразвука на организм человека

    В конце 60-х годов французский исследователь Гавро обнаружил, что инфразвук определенных частот может вызвать у человека тревожность и беспокойство. Инфразвук с частотой 7 Гц смертелен для человека.

    Действие инфразвука может вызвать головные боли, снижение внимания и работоспособности и даже иногда нарушение функции вестибулярного аппарата.

    Основные источники инфразвуковых волн

    Развитие промышленного производства и транспорта привело к значительному увеличению источников инфразвука в окружающей среде и возрастанию интенсивности уровня инфразвука.

    Источник инфразвука Характерный частотный
    диапазон инфразвука
    Уровни инфразвука
    Автомобильный транспорт Весь спектр инфразвукового диапазона Снаружи 70-90 дБ,
    внутри до 120 дБ
    Железнодорожный транспорт и трамваи 10-16 Гц Внутри и снаружи
    от 85 до 120 дБ
    Промышленные установки аэродинамического и ударного действия 8-12 Гц До 90-105 дБ
    Вентиляция промышленных установок и помещений, то же в метрополитене 3-20 Гц До 75-95 дБ
    Реактивные самолеты Около 20 Гц Снаружи до 130 дБ

    Технотронные методики.

    В общем источников инфразвука хоть отбавляй. Поговорим теперь о том, каков же все-таки вероятный механизм воздействия инфразвука на организм человека и удается ли хоть в какой-то мере с этим воздействием боротся.

    Длина инфразвуковой волны весьма велика (на частоте 3.5 Гц она равна 100 метрам), проникновение в ткани тела также велико. Фигурально говоря, человек слышит инфразвук всем телом. Какие же неприятности может причинить проникший в тело инвразвук? Естественно, об этом пока имеются лишь отрывочные сведения.

    Современная наука предложила много специфичных способов для управления поведением, мыслями и чувствами человека. При этом в частности используют:

  • нижепороговое аудиовизуальное раздражение;
  • электрошок;
  • ультразвук;
  • инфразвук;
  • сверхвысокочастотное (СВЧ) излучение;
  • торсионное излучение;
  • ударные волны…

Рассмотрим воздействие инфразвуком немного подробнее:
Довольно эффективно, в смысле влияния на человека, задействование механического резонанса упругих колебаний с частотами ниже 16 Гц, обычно невоспринимаемыми на слух. Самым опасным здесь считается промежуток от 6 до 9 Гц. Значительные психотронные эффекты сильнее всего выказываются на частоте 7 Гц, созвучной альфаритму природных колебаний мозга, причем любая умственная работа в этом случае делается невозможной, поскольку кажется, что голова вот-вот разорвется на мелкие кусочки. Звук малой интенсивности вызывает тошноту и звон в ушах, а также ухудшение зрения и безотчетный страх. Звук средней интенсивности расстраивает органы пищеварения и мозг, рождая паралич, общую слабость, а иногда слепоту. Упругий мощный инфразвук способен повредить, и даже полностью остановить сердце. Обычно неприятные ощущения начинаются со 120 дБ напряженности, травмирующие — со 130 дБ. Инфрачастоты около 12 Гц при силе в 85-110 дБ, наводят приступы морской болезни и головокружение, а колебания частотой 15-18 Гц при той же интенсивности внушают чувства беспокойства, неуверенности и, наконец, панического страха .

В начале 1950-х годов французский исследователь Гавро, изучавший влияние инфразвука на организм человека, установил, что при колебаниях порядка 6 Гц у добровольцев, участвовавших в опытах возникает ощущение усталости, потом беспокойства, переходящего в безотчетный ужас. По мнению Гавро, при 7 Гц возможен паралич сердца и нервной системы .

Ритмы характерные для большинства систем организма человека лежат в инфразвуковом диапазоне:

  • сокращения сердца 1-2 Гц
  • дельта-ритм мозга (состояние сна) 0,5-3,5 Гц
  • альфа-ритм мозга (состояние покоя) 8-13 Гц
  • бета-ритм мозга (умственная работа) 14-35 Гц .

Внутренние органы вибрируют тоже с инфразвуковыми частотами. В инфразвуковом диапазоне находится ритм кишечника.

Исследования медиков в области влияния на человека инфразвука.

Медики обратили внимание на опасный резонанс брюшной полости, имеющей место при колебаниях с частотой 4-8 Гц. Попробовали стягивать (сначало на модели) область живота ремнями. Частоты резонанса несколько повысились, однако физиологическое воздействие инфразвука не ослабилось.

Легкие и сердце, как всякие объемные резонирующие системы, также склонны к интенсивным колебаниям при совпадении частот их резонансов с частотой инфразвука. Самое малое сопротивление инвразвуку оказывают стенки легких, что в конце концов может вызвать их повреждение.

Мозг. Здесь картина взаимодействия с инфразвуком особенно сложна. Небольшой группе испытуемых было предложено решить несложные задачи сначала при воздействии шума с частотой ниже 15 герц и уровнем примерно 115 дБ, затем при действии алкоголя и, наконец, при действии обоих факторов одновременно. Была установленна аналогия воздействия на человека алкоголя и инфразвукового облучения. При одновременном влиянии этих факторов эффект усиливался, способность к простейшей умственной работе заметно ухудшалась.

В других опытах было установлено, что и мозг может резонировать на определенных частотах. Кроме резонанса мозга как упругоинерционного тела выявилась возможность “перекрестного” эффекта резонанса инфразвука с частотой a- и b- волн, существующих в мозгу каждого человека. Эти биологические волны отчетливо обнаруживаются на энцефалограммах, и по их характеру врачи судят о тех или иных заболеваниях мозга. Высказано предположение о том, что случайная стимуляция биоволн инфрозвуком соответствующей частоты может влиять на физиологическое состояние мозга.

Кровеносные сосуды. Здесь имеются некоторые статистические данные. В опытах французских акустиков и физиологов 42 молодых человека в течении 50 минут подверглись воздействию инфразвука с частотой 7.5 Гц и уровнем 130 дБ. У всех испытуемах возникло заметное увеличение нижнего предела артериального давления. При воздействии инфразвука фиксировались изменения ритма сердечных сокращений и дыхания, ослабление функций зрения и слуха, повышенная утомляемость и другие нарушения.

Воздействие низкочастотных колебаний на живые организмы известно давно. Например, некоторые люди, испытавшие подземные толчки при землетрясении, страдали от тошноты. (Тогда следует вспомнить и о тошноте, вызываемой колебаниями судна или качелей. Это связано с воздействием на вестибулярный аппарат. И проявляется подобный «эффект» не у всех.) Никола Тесла (фамилия которого теперь обозначает одну из основных единиц измерений, уроженец Сербии) около ста лет тому назад инициировал такой эффект у подопытного, сидящего на вибрирующем стуле. (*Умников, считающих этот опыт негуманным не нашлось) . Наблюдаемые результаты относятся к взаимодействию твердых тел, когда колебания передаются человеку через твердую среду. Воздействие колебаний, передаваемых организму от воздушной среды, недостаточно изучено. Раскачать тело, как например на качелях, таким способом не удастся. Возможно, что неприятные ощущения возникают при резонансе: совпадении частоты вынужденных колебаний с частотой колебаний каких либо органов или тканей. В прежних публикациях об инфразвуке упоминали его воздействие на психику, проявляющееся как необъяснимый страх. Может быть, в этом также «виноват» резонанс

В физике резонансом называют увеличение амплитуды колебаний объекта, когда его собственная частота колебаний совпадает с частотой внешнего воздействия. Если таким объектом окажется внутренний орган, кровеносная либо нервная система, то нарушение их функционирования и даже механическое разрушение, вполне реально.

Существуют ли какие-нибудь меры борьбы с инфразвуком?

Некоторые меры борьбы с инфразвуком. Следует признаться, что этих мер пока не так уж много.

Общественные меры борьбы с шумом начали разрабатываться уже давно. Юлий Цезарь почти 2000 лет назад в Риме запретил езду ночью на грохочущих колесницах. А 400 лет назад королева Англии Елизавета Третья запретила мужьям бить своих жен после 10 часов вечера, «чтобы их крики не беспокоили соседей». Сейчас уже в мировом масштабе принимаются меры борьбы с шумовым загрязнением среды: усовершенствуются двигатели и другие части машин, этот фактор учитывается при проектировании трасс и жилых районов, используются звукоизолирующие материалы и конструкции, экранирующие устройства, зеленые насаждения. Но следует помнить, что и каждый из нас должен быть активным участником этой борьбы с шумом.

Упомянем оригинальный глушитель инфразвукового шума компрессоров и других машин, разработанный лабораторией охраны труда Санкт-Петербургского института инженеров железнодорожного транспорта. В коробе этого глушителя одна из стенок сделана податливой, и это позволяет выравнивать низкочастотные переменные давления в потоке воздуха, идущего через глушитель и трубопровод .

Площадки виброформовочных машин могут являтся мощным источником низкочастотного звука. По-видимому, здесь не исключено применение интерфереционного метода ослабления излучения путем противофазного наложения колебаний. В системах всасывания и распыления воздуха следует избегать резких изменений сечения, неоднородностей на пути движения потока, чтобы исключить возникновение низкочастотных колебаний.

Некоторые исследователи разделяют действие инфразвука на четыре градации – от слабой до … смертельной. Классификация – вещь хорошая, но она выглядит довольно беспомощьно, если неизвестно, с чем связано проявление каждой градации.

Инфразвук на сцене и телевидении?

Если посмотреть в прошлое, то там можно уже заметить воздействие инфразвуковыми частотами на человека.Вот инструкция из книги Мишеля Харнера “Путь шамана”:

Для входа в “тунель” вам понадобится, чтобы ваш партнер все время, необходимое для получения вами “шаманского состояния сознания” сопровождал ударами в барабан или бубен с частотой 120 ударов в минуту (2 Гц). Также можно использовать магнитофонную запись шаманского “камлания”. Через несколько минут вы увидите тунель из черных и белых колец и начнете двигаться по нему. Скорость чередования колец задается ритмом ударов.

Известно, что современная рок-музыка, джаз и т.п. обязаны своим происхождением традиционной африканской “музыке”. Эта, так называемая “музыка”, ни что иное, как элемент ритуальных действий африканских шаманов или коллективных ритуальных действий племени. Большинство мелодий и ритмов рок-музыки взяты непостредственно из практики африканских шаманов . Таким образом, воздействие рок-музыки на слушателя основано на том, что он вводится в состояние, похожее на то, которое переживает шаман во время ритуальных действий. “Сила рока заключена в прерывистых пульсациях,ритмах, вызывающих биопсихическую реакцию организма, способную повлиять на функционирование различных органов. Если ритм кратен полутора ударам в секунду и сопровождается мощным давлением инфразвуковых частот, то способен вызвать у человека экстаз. При ритме же равном двум ударам в секунду, и на тех же чаcтотах, слушающий впадает в танцевальный транс, который сходнен наркотическому”.

В этом же ряду стоит и собственно ритуальная музыка, например, “медитативная” музыка Секо Асахары, главы религиозной секты “Аум Синрике”, которая в свое время изо дня в день транслировалась российским радио на всю страну .

Воздействие психотронного оружия наиболее массировано, когда в качестве промежуточных каналов используется телевидение и компьютерные системы. Современные компьютерные технологии позволяют преобразовать любой звуковой (музыкальный) файл таким образом, чтобы при прослушивании возникали необходимиые спецэффекты: “…звук, закодированный под альфа-ритм, поможет Вам расслабиться, звук, закодированный под дельта-ритм, поможет уснуть, под тета-ритм – достигнуть состояния медитации.

Так является ли инфразвук психотронным оружием?

Создатели сверхоружия, основанного на воздействии инфразвука, утверждают, что оно полностью подавляет противника, вызывая у него такие «неотвратимые» последствия, как тошнота и понос. Разработчики вооружения такого вида и исследователи его ужасных последствий «съели» немало денег из госказны. Возможно, однако, что вышеупомянутые неприятности грозят не воображаемому противнику, а вполне реальным генералам — заказчикам подобного оружия — в качестве возмездия за некомпетентность.

Юрген Альтман (Jurgen Altmann), исследователь из Германии, на совместной конференции Европейской и Американской акустических ассоциаций (март 1999) заявил, что инфразвуковое оружие не вызывает приписываемых ему эффектов.

На подобные штуки надеялись в армии и полиции. Блюстители правопорядка полагали, что эти средства более эффектны, чем химические, такие, как например, слезоточивый газ.

А пока что, как утверждает Альтман, изучавший влияние на людей и животных инфразвуковых колебаний, звуковое оружие не работает. По его словам, даже при уровне шума 170 децибел что-либо особенное, вроде непроизвольных испражнений, зафиксировать не удалось. (Вспомнилось, что недавно СМИ отметили успешные испытания инфра-пугалки американского производства. Блеф на благо «изобретателям» и на устрашение воображаемого противника ?)

Сид Хил (Sid Heal), работающий на минобороны США по программе разработки инфразвукового оружия, отмечает, что исследователи изменили постановку задачи. Наряду с попытками создания прототипов оружия они тщательно изучают воздействие инфразвука на человека.

Однако же все таки в настоящее время достаточно в час “Х” добавить “катализатор” – и заложенная программа заработает. Начнется разрушение органов, искусственная мутация генов или изменение сознания. Таким “толчком” может, например, стать массированное облучение о проблеме которой беспокоются российские ученые и военные.

Из рассказа доктора технических наук В. Канюка: “Я возглавлял секретный комплекс в Подлипкахю. Он входил в НПО “Энергия” (руководитель – акодемик В.П. Глушко). Во исполнении закрытого Постановления ЦК КПСС и Совмина СССР от 27 января 1986 года мы создали генератор специальных физических полей. Он был способен корректировать поведения огромных масс населения. Выведенная на космическую орбиту, эта аппаратура охватывала своим “лучем” территорию, равную Краснодарскому краю. Средства, ежегодно выделявшиеся на эту и смежные с ней программы, были эквивалентны пяти миллиардам долларов…”

Летом 1991 года комитет Верховного Совета СССР опубликовал жутковатую цифру. КГБ, Минсредмаш, Академия наук, Министерство обороны и другие ведомства израсходовали на разработки психотронного оружия полмиллиарда полновесных дореформенных рублей. Одной задачей было “дистанционное медикобиологическое и психофизическое воздействие на войска и население противника” .

Торсионные, микролентонные и другие недавно открытые частицы обладают колоссальной проникаемостью. Генераторы подобных полей создаются, например, в зеленоградской лаборотории. Из инструкции одного из таких приборов: ”Прибор настраивается на индивидуальные волновые характеристики человека. Очевидно, возможна настройка на параметры целого этноса. При этом для решения расовых проблем уже не нужны концлагеря. Все происходит абсолютно незаметно. Объект либо вымирает, либо теряет свои национальные черты”. (Кстати, по определению умершего загадочной смертью академика Ф.Я. Шипурова, душа человека есть волновое поле с измеримами характеристиками. Это справедливо и в отношении существующих “душ” народов.)

Многие ученные обеспокоены зловещими возможностями этнического оружия. Существуют отечественные разработки “Лава-5” и “Русло-1”. Указывается, что в классификации средств массового поражения (ею пользуются военно промышленные комплексы развитых стран) появился пункт: “Это оружие с воздействием на генетический аппарат. В определенных кругах оно называется “экологически чистым” и даже “гуманным”. Не разрушающим городов и зачастую не убивающим людей”.

Был случай, когда в 90-х годах, в американской прессе прошла серия сенсационных публикаций о загадочной гибели индейцев. По непонятной причине умирали только представители племени навахо. Количество жертв составило несколько десятков человек. Итак, только индейцы. И только навахо. Среди версий есть предположение о воздействии психотропным оружием.

Серия сообщений «Космоэнергетика»:
Часть 1 — Что такое космоэнергетика?
Часть 2 — Интервью с Петровым В.А. «О космоэнергетике.»

Часть 15 — Молекулярные машины: что это такое и как их делать?
Часть 16 — Колесо времени.Видео.
Часть 17 — Опасные звуковые частоты-инфразвук
Часть 18 — Что есть физический вакуум?
Часть 19 — Невидимая реальность.

Часть 30 — О плоской Земле. Изменение реальности.
Часть 31 — Сергей Шандарин: «Гигантская паутина Вселенной»
Часть 32 — Биофизик. Планета начала жить в другом измерении! Квантовый переход состоялся!

Влияние радиочастот и инфразвука на человека

Общая характеристика РЧ – воздействий

При обсуждении возможных неблагоприятных эффектов для здоровья при воздействии на человека радиочастотных (РЧ) полей важно не путать РЧ-поля с ионизирующим излучением – таким как, рентгеновские лучи, гамма-лучи или коротковолновое ультрафиолетовое излучение. В отличие от ионизирующего излучения даже мощные РЧ-поля не могут вызвать ионизацию или радиоактивность в организме. По этой причине РЧ-поля называют неионизирующей радиостанцией. Современные системы мобильной телефонной связи работают на частотах от 800 до 1900 МГц. Системы, использующие частоты 2100 МГц и выше, могут появиться вскоре.

Эти частоты попадают в диапазон от 1 МГц до 10 ГГц (1 ГГц = 1 тысячи МГц). Неблагоприятные РЧ-воздействия для здоровья в этом диапазоне излучаются на протяжении 45 лет.

Исследования влияния электромагнитных полей на здоровье человека касались в основном работников промышленных предприятий, имеющие контакт с генераторами электромагнитного излучения. Было выделено заболевание – радиоволновая болезнь. Она проявляется в функциональных нарушениях нервной системы, неврастеническом и астеническом синдромах. Люди, долгое время находящиеся в электромагнитном поле, жалуются на слабость, раздражительность, быструю утомляемость, ослабление памяти, нарушение сна.

Воздействие на здоровье РЧ-полей от 1 МГц до 10 ГГц

Как известно, РЧ-поля в этом диапазоне проникают сквозь экспонированные ткани и создают нагрев вследствие поглощения энергии. Глубина поглощения РЧ-поля в ткань зависит от частоты поля, и она выше при более низких частотах. Даже очень низкие уровни РЧ-энергии создают небольшое число тепла, но это тепло отводится в процессе нормальной терморегуляции организма. Однако международные технические стандарты, согласно которым производятся мобильные телефоны и их базовые станции, не позволяют им вызвать сколь-либо значительного нагрева (больше 1 градуса Цельсия)

По сообщениям ученых, воздействия РЧ-полей низкой интенсивности – слишком низкое для того чтобы вызывать значительный нагрев, — все же изменяет электрическую активность мозга кошек и кроликов за счет подвижности ионов кальция. Также сообщалось о присутствии таково эффекта в изолированных тканях и клетках.

Другие исследования дают основание предполагать, что РЧ-поля изменяют скорость деления клеток, ферментативную активность или воздействуют на гены в клеточной ДНК. Эти эффекты не всегда фиксировались, а также не удалось достаточно хорошо понять их роль во влиянии на здоровье человека, с тем, чтобы создать основу для ограничения воздействия РЧ-полей низкой интенсивности людей.

Воздействие РЧ-полей и рак

Современные научные факты указывают на малую вероятность того, что воздействие низких уровней РЧ-полей, включая поля, испускаемые мобильными телефонами и их базовыми станциями, могут вызывать или стимулировать развитие онкологических заболеваний.

Онкологические исследования на животных не представили убедительных свидетельств влияния воздействий РЧ-полей на возникновение опухолей. Однако проведенные недавно опыты показали, что РЧ-поля, подобно применяемым, в мобильной электросвязи, повышают заболеваемость раком у мышей, которые находились вблизи (0,65 м) от передающей РЧ-антенны. Будут производиться дальнейшие изыскания, чтобы определить связь этих результатов с онкологией у людей.

В настоящее время эпидемиологические исследования не дают адекватной информации, позволяющей провести надлежащую оценку онкологического риска, создаваемого РЧ-воздействием, поскольку результаты этих исследований противоречивы. Кроме того стало очевидным, что имеется очень мало исследований, касающихся вопроса локального воздействия РЧ-полей на область головы и шеи.

РЧ-поля от телефонных трубок

Даже, невзирая на то, что трубки мобильных телефонов излучают гораздо меньше энергии, чем базовая станция, организм пользователя поглощает гораздо больше энергии от антенной телефонной трубки – небольшого штырька, выступающего из корпуса трубки. Голова пользователя получает наиболее высокое РЧ-воздействие. Однако это локальное РЧ-облучение регламентируется международными нормативами и национальными стандартами, и оно не должно вызывать какого — либо локального повышения температуры, более чем на один градус.

Международные проекты. ВОЗ (Всемирная организация здравоохранения) по электромагнитным полям определила конкретные научные исследования, необходимые для решения проблемы локального воздействия РЧ-полей. Одно из главных исследований проводит Международное агентство по изучению рака. Оно рассматривает взаимосвязь между использованием мобильного телефона и потенциальными отдаленными неблагоприятными последствиями для здоровья.

РЧ-поля вблизи базовых станций

На всех расстояниях уровни РЧ-поля на поверхности земли от базовых станций вполне вписываются в международные нормативы по воздействию РЧ-излучений на население. Некоторые антенны, установленные на крышах зданий, снабжены ограждениями, предотвращающим доступ людей в те места, где РЧ-поля превышают эти пределы. Поскольку антенны, установленные по периметру зданий, посылают свою мощность наружу, люди, находящиеся внутри, не подвергаются воздействию высоких уровней электромагнитных полей (ЭМП).

В настоящее время, пока не проведено строгих научных исследований по опасности ЭМП для населения, операторам связи можно предложить следующие меры по защите населения от этих полей.

— Строго соблюдать существующие международные стандарты безопасности. Такие стандарты, основанные на современных знаниях, разрабатываются с целью защитить каждого человека: пользователей мобильных телефонов, тех, кто работает поблизости или проживает вокруг базовых станций, а также людей, которые не пользуются мобильными телефонами.

— Простые защитные меры. Заборы или ограждения вокруг площадок с установленными антеннами могут помочь предотвратить несанкционированный доступ в зоны, где уровни воздействия могут быть превышены. Однако научные факты, не указывают на какую-либо необходимость в покрытиях, поглощающих РЧ-излучения, вокруг мобильных телефонных трубок.

— Консультация с местными органами власти и общественностью при выборе мест установке базовых станций. Например, при размещении их вблизи детских садов, школ и игровых площадок может потребоваться специальное рассмотрение этого вопроса. Открытое общение и дискуссии между оператором мобильных телефонов и общественностью может уменьшить всяческое недоверие и опасение – как реальные, так и надуманные.

Влияние инфразвука на человека

Инфразвук — колебания частотой ниже 20 Гц.
Подавляющее число современных людей не слышат акустические колебания частотой ниже 40 Гц.
Максимальные уровни низкочастотных акустических колебаний от промышленных и транспортных источников достигают 100–110 дБ.
При уровне от 110 до 150 дБ и более он может вызывать у людей неприятные субъективные ощущения и многочисленные реактивные изменения, к числу которых следует отнести изменения в центральной нервной, сердечнососудистой и дыхательной системах, вестибулярном анализаторе.
Допустимыми уровнями звукового давления являются 105 дБ в октавных полосах 2, 4, 8, 16 Гц и 102 дБ в октавной полосе 31.5 Гц. Инфразвук может вселить в человека такие чувства как тоска, панический страх, ощущение холода, беспокойство, дрожь в позвоночнике. Люди, подвергшиеся воздействию инфразвука, испытывают примерно те же ощущения, что и при посещении мест, где происходили встречи с призраками. Попадая в резонанс с биоритмами человека, инфразвук особо высокой интенсивности может вызвать мгновенную смерть.
Низкочастотные звуковые колебания могут быть причиной появления над океаном быстро возникающего и также быстро исчезающего густого («как молоко») тумана. Некоторые объясняют феномен Бермудского треугольника именно инфразвуком, который генерируется большими волнами — люди начинают сильно паниковать, становятся неуравновешенными (могут поубивать друг друга).
Инфразвук может «сдвигать» частоты настройки внутренних органов.
«Инфразвуковые колебания частотой 8 — 13 Гц хорошо распространяются в воде и проявляются за 10 — 15 ч до шторма». Во многих соборах и церквях есть столь длинные органные трубы, что они издают звук частотой менее 20 Гц.
Резонансные частоты внутренних органов человека:
Частота (Гц), Орган
20 –30 Голова
40 –100 Глаза
0.5 –13 Вестибулярный аппарат
1–2 Сердце
2–3 Желудок
2–4 Кишечник
4–8 Брюшная полость
6–8 Почки
2–5 Руки
6 Позвоночник
При совпадении частот внутренних органов и инфразвука, соответствующие органы начинают вибрировать, что может сопровождаться сильнейшими болевыми ощущениями.
Биоэффективность для человека частот 0,05 — 0,06, 0,1 — 0,3, 80 и 300 Гц объясняется резонансом кровеносной системы, а частот 0,02 — 0,2, 1 — 1,6, 20 Гц — резонансом сердца. Наборы биологически активных частот не совпадают у различных животных. Например, резонансные частоты сердца для человека дают 20 Гц, для лошади — 10 Гц, а для кролика и крыс — 45 Гц.
«Голос моря» — это инфразвуковые волны, возникающие над поверхностью моря при сильном ветре, в результате вихреобразования за гребнями волн. Инфразвук с частотой 7 Гц смертелен для человека.
Значительные психотропные эффекты сильнее всего выказываются на частоте 7 Гц, созвучной альфаритму природных колебаний мозга, причем любая умственная работа в этом случае делается невозможной, поскольку кажется, что голова вот-вот разорвется на мелкие кусочки. Инфрачастоты около 12 Гц при силе в 85–110 дБ, наводят приступы морской болезни и головокружение, а колебания частотой 15–18 Гц при той же интенсивности внушают чувства беспокойства, неуверенности и, наконец, панического страха.
При достаточной интенсивности звуковое восприятие возникает и на частотах в единицы герц. В настоящее время область его излучения простирается вниз примерно до 0.001 Гц. Таким образом, диапазон инфразвуковых частот охватывает около 15 октав. Если ритм кратен полутора ударам в секунду и сопровождается мощным давлением инфразвуковых частот, то способен вызвать у человека экстаз. При ритме же равном двум ударам в секунду, и на тех же частотах, слушающий впадает в танцевальный транс, который сходен наркотическому.
При воздействии на человека инфразвука с частотами, близкими к 6 Гц, могут отличаться друг от друга картины, создаваемые левым и правым глазом, начнет «ломаться» горизонт, возникнут проблемы с ориентацией в пространстве, придут необъяснимая тревога, страх. Подобные ощущения вызывают и пульсации света на частотах 4–8 Гц. Инфразвук может действовать не только на зрение, но и на психику, а также шевелить волоски на коже, создавая ощущение холода.
Инфразвук в атмосфере может быть как результатом сейсмических колебаний, так и активно влиять на них. В характере взаимообмена колебательной энергией между литосферой и атмосферой могут проявляться процессы подготовки крупных землетрясений.
Инфразвуковые колебания «чувствительны» к изменениям сейсмической активности в радиусе до 2000 км.
Важным направлением исследования связи ИКА с процессами в геосферах является искусственное акустическое возмущение нижней атмосферы, и последующее наблюдение изменения различных геофизических полей. Для моделирования акустического возмущения использовались крупные наземные взрывы. Таким путем проводились исследования влияния наземных акустических возмущений на ионосферу. Получены убедительные факты, подтверждающие влияние наземных взрывов на ионосферную плазму.
Короткое акустическое воздействие высокой интенсивности изменяет характер инфразвуковых колебаний в атмосфере на длительное время. Достигая ионосферных высот, инфразвуковые колебания воздействуют на ионосферные электрические токи и приводят к изменениям геомагнитного поля.
Анализ спектров инфразвука за период 1997—2000 гг. показал наличие частот с периодами характерными для солнечной активности 27 суток, 24 часа, 12 часов. Энергия инфразвука возрастает при падении солнечной активности.
За 5–10 дней до крупных землетрясений существенно изменяется спектр инфразвуковых колебаний в атмосфере. Возможно так же, что посредством инфразвука осуществляется влияние солнечной активности на биосферу Земли.